最近 DeepSeek 火爆全网,相信不少同学都看过所谓的清华大学 DeepSeek 提示词教程(笑)。清华大学是真干实事,近日开源最新的大模型推理引擎赤兔(chitu),是一个专注于效率、灵活性和可用性的高性能大语言模型推理框架。
-
多元算力适配:不仅支持 NVIDIA 最新旗舰到旧款的多系列产品,也为国产芯片提供优化支持。
-
全场景可伸缩:从纯 CPU 部署、单 GPU 部署到大规模集群部署,赤兔引擎提供可扩展的解决方案。
-
长期稳定运行:可应用于实际生产环境,稳定性足以承载并发业务流量。
所谓人中吕布,马中赤兔,名字寓意很好,而性能也超越或者与 vLLM 相当,可谓是名副其实了。我们先看一组实测数据,感受一下赤兔推理引擎的强大。
1. A800 实测
在 A800(40GB) 集群上部署 DeepSeek-R1-671B,vLLM 与 Chitu 同时运行 DeepSeek-R1-671B,3 节点可达 vLLM 6 节点的吐字效率。
这里官方 Repo 没做说明,推测应该是每机器节点 8 卡 A800,即 240G 显存,共 3 个(720G)或者 6 个节点(1440G),不然显存无法运行 BF8 或者 BF16 的满血版本 R1。
乍一看好像很强,其实这个数据没那么明显。事实上,我们应该比的是 6 节点之间的比较,6.85 和 8.5 的差距,有提升但不大。3 节点因为运行的是 FP8,所以不好直接比较的。好在,官网也有在双机 8 卡 H20(96G)上的实测对比数据。
2. H20 实测
在批量较小的情况下,chitu 性能略强或相当于 vllm,在大批量场景下,chitu 的性能有巨大的下降,大约只有 vllm 的 67.9%。
官方表示,我们将在 Chitu 的后续版本中对大批量处理场景进行优化。
我相信大批量场景下,chitu 很快就会优化好。毕竟单 batch 性能领先情况下,大批量只是时间问题,毕竟 3 月 14 号刚开源,就敢和老牌开源推理引擎 vLLM 掰手腕。
3. 支持的模型
官方目前没有一个支持模型的列表,从官方 Repo 上看,涵盖了从 Qwen 7B 到 DeepSeek 671B,主流的开源模型基本都包含了。
-
DeepSeek-R1-Distill-Qwen-14B
-
DeepSeek-R1-bf16
-
DeepSeek-R1
-
Meta-Llama-3-8B-Instruct-original
-
Mixtral-8x7B-Instruct-v0.1
-
Qwen2-72B-Instruct
-
Qwen2-7B-Instruct
-
glm-4-9b-chat
4. 总结
具体部署可参考官方 Repohttps://github.com/thu-pacman/chitu
,希望赤兔越来越快,快如其名!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓