斯坦福大学发布《2025年人工智能指数报告》

4月8日,斯坦福李飞飞团队发布第8版人工智能指数报告(2025)。2025 年的这份指数报告是“迄今为止内容最为全面的一版”,并且发布于人工智能在社会、经济以及全球治理等各个领域的影响力正持续增强的重要时刻。

今年报告的新内容包括对不断演变的人工智能硬件格局的深入分析、对推理成本的全新估算,以及对人工智能领域学术发表和专利申请趋势的新分析。报告还引入了有关企业采用负责任的人工智能实践的新数据,同时更加关注了对人工智能在科学和医学领域的作用。

本报告长达456页,图小灵选译了总结报告重要成果的十二个启示、8个章节的核心内容、以及相关目录。报告原文可点击文末“阅读原文”进入原文页面下载。值得注意的是,该PDF文件中附有云盘链接,包含各章图表的原始统计数据,需要的读者可自行下载查阅。

去年该团队的《人工智能指数报告(2024)》发布后,图小灵也曾第一时间编译,感兴趣的读者可点击阅读~

图片

十二个启示

1. 人工智能在更高要求的基准测试中的表现持续提升。2023年,研究人员推出了新的基准测试(benchmarks)——MMMU、GPQA和SWE-bench,用于测试先进人工智能系统的极限。仅一年之后,AI 的性能大幅提高:在MMMU、GPQA和SWE-bench测试中,得分分别提高了18.8、48.9和67.3个百分点。除了基准测试之外,人工智能系统在生成高质量视频方面取得了重大进展,并且在某些情况下,语言模型智能体在时间有限的编程任务中甚至比人类表现得更出色。

图片

2. 人工智能日益融入日常生活。从医疗保健到交通运输,人工智能正迅速从实验室走向日常生活。2023年,美国食品药品监督管理局(FDA)批准了223款搭载人工智能的医疗设备,而2015年仅有6款。在道路上,自动驾驶汽车已不再处于试验阶段:美国最大的运营商之一Waymo每周提供超过15万次自动驾驶出行服务,而百度价格亲民的阿波罗智行(Apollo Go)自动驾驶出租车车队如今已在中国多个城市投入运营。

图片

3. 企业全面进军人工智能领域,投资和应用水平创下纪录,同时研究不断表明人工智能对生产力有显著影响。2024年,美国的私人人工智能投资增长至1091亿美元,几乎是中国(93亿美元)的12倍,英国(45亿美元)的24倍。生成式人工智能发展势头尤为强劲,全球私人投资达到339亿美元,较2023年增长了18.7%。

人工智能在商业领域的应用也在加速:2024年,78%的组织表示在使用人工智能,高于上一年的55%。与此同时,越来越多的研究证实,人工智能能够提高生产力,并且在大多数情况下,有助于缩小劳动力队伍中的技能差距。

图片

4. 美国在顶尖人工智能模型的研发方面仍处于领先地位,但中国正在缩小性能差距。2024年,美国的机构研发出了40个知名的人工智能模型,大幅领先于中国的15个和欧洲的3个。尽管美国在数量上保持领先,但中国的模型在质量上迅速缩小了差距:在MMLU和HumanEval等主要基准测试中,性能差异从2023年的两位数缩小到了2024年的近乎持平。与此同时,中国在人工智能领域的学术发表和专利申请方面仍保持领先。与此同时,模型开发日益全球化,中东、拉丁美洲和东南亚等地区也推出了一些知名的模型。

图片

5. 负责任的人工智能生态系统在不均衡地发展。与人工智能相关的事件急剧增加,但在主要的工业模型开发者中,标准化的负责任人工智能(RAI)评估仍然少见。不过,像HELM Safety、AIR-Bench和FACTS等新的基准测试为评估真实性和安全性提供了有前景的工具。在企业方面,虽然认识到了负责任人工智能的风险,但在采取有意义的行动方面仍存在差距。

相比之下,各国政府表现出了更高的紧迫感:2024年,全球在人工智能治理方面的合作加强,经济合作与发展组织(OECD)、欧盟、联合国和非洲联盟等组织发布了侧重于透明度、可信度和其他负责任人工智能核心原则的框架。 

图片

6. 全球对人工智能的乐观情绪在上升,但地区间仍存在巨大差异。在中国(83%)、印度尼西亚(80%)和泰国(77%)等国家,绝大多数人认为人工智能产品和服务利大于弊。相比之下,在加拿大(40%)、美国(39%)和荷兰(36%)等地区,乐观情绪仍低得多。不过,人们的态度正在转变:自2022年以来,在几个此前持怀疑态度的国家,乐观情绪显著上升,其中包括德国(上升10%)、法国(上升10%)、加拿大(上升8%)、英国(上升8%)和美国(上升4%)。

图片

7. 人工智能变得更高效、更经济实惠且更易于使用。在性能日益强大的小型模型的推动下,达到GPT-3.5水平的系统的推理成本在2022年11月至2024年10月期间下降了超过280倍。在硬件层面,成本每年下降30%,而能源效率每年提高40%。开源权重模型也在缩小与闭源模型的差距,在某些基准测试中,一年内性能差距从8%缩小到了仅1.7%。总体而言,这些趋势正迅速降低先进人工智能的应用门槛。

图片

8. 各国政府正通过监管和投资加大对人工智能的关注力度。2024年,美国联邦机构出台了59项与人工智能相关的法规,是2023年的两倍多,且发布法规的机构数量也增加了一倍。从全球范围来看,自2023年以来,75个国家的立法中提及人工智能的次数增长了21.3%,是2016年的9倍。

除了关注度不断提高,各国政府也在大规模投资:加拿大承诺投入24亿美元,中国推出了规模达475亿美元的半导体基金,法国投入1090亿欧元,印度承诺投入12.5亿美元,沙特阿拉伯的“超越计划”是一项价值1000亿美元的举措。

图片

9. 人工智能和计算机科学教育正在普及,但在获取教育资源和做好学习准备的方面仍存在差距。现在,三分之二的国家已提供或计划提供从幼儿园到12年级(K-12)的计算机科学(CS)教育,这一比例是2019年的两倍,其中非洲和拉丁美洲进步最大。在美国,过去10年中计算机专业的学士学位获得者数量增加了22%。然而,由于电力等基本基础设施的不足,许多非洲国家获取相关教育的机会仍然有限。在美国,81%的K-12计算机科学教师认为人工智能应该成为基础计算机科学教育的一部分,但只有不到一半的教师觉得自己具备教授人工智能的能力。

图片

10. 行业在人工智能领域迅速发展,但前沿竞争愈发激烈。2024年,近90%的知名人工智能模型来自行业,高于2023年的60%,而学术界仍然是高引用率研究的主要来源。模型规模继续迅速增长——训练所需的计算量每五个月翻一番,数据集规模每八个月翻一番,能源使用量则逐年增加。然而,性能差距正在缩小:排名第一和第十的模型之间的得分差距在一年内从11.9%降至5.4%,排名前两位的模型现在仅相差0.7%。人工智能前沿领域的竞争日益激烈,且参与者越来越多。

图片

11. 人工智能因其对科学的影响而获得最高荣誉。人工智能日益重要的地位体现在一些重大科学奖项中:两项诺贝尔奖分别表彰了对深度学习(物理学领域)以及将其应用于蛋白质折叠(化学领域)做出贡献的研究成果,图灵奖则授予了对强化学习做出开创性贡献的人。

图片

12. 复杂推理仍然是一项挑战。人工智能模型在解决国际数学奥林匹克竞赛的题目等任务中表现出色,但在像PlanBench这样的复杂推理基准测试中仍面临困难。即使存在可证明正确的解决方案,它们也常常无法可靠地解决逻辑任务,这限制了它们在对精度要求极高的高风险场景中的有效性。 

图片

核心内容

第一章:研究与开发 

  1. 行业持续在人工智能领域进行大量投资,并在知名人工智能模型开发方面占据领先地位,而学术界则在高引用率研究方面处于领先

  2. 中国在人工智能研究出版物总量上领先,而美国在具有高度影响力的研究方面领先

  3. 人工智能出版物总量持续增长,并在计算机科学领域中占据越来越重要的地位

  4. 美国仍然是知名人工智能模型的主要来源地。2024年,美国的机构开发出了40个知名人工智能模型,大幅超过中国的15个以及欧洲总共的3个。

  5. 人工智能模型变得越来越庞大,对计算能力的要求越来越高,并且耗能也越来越大。新的研究发现,知名人工智能模型的训练计算量大约每五个月翻一番,训练大语言模型(LLM)的数据集规模每八个月翻一番,而训练所需的电力则逐年增加。行业的大规模投资持续推动着模型规模的扩大和性能的提升。

  6. 人工智能模型的使用成本越来越低。在MMLU(一个评估语言模型性能的常用基准测试)上得分相当于GPT-3.5(64.8分)的人工智能模型,其查询成本已从2022年11月的每百万个标记20美元降至2024年10月的仅每百万个标记0.07美元(Gemini-1.5-Flash-8B),在大约18个月内降低了超过280倍。根据任务的不同,大语言模型的推理价格每年下降幅度在9倍到900倍之间。

  7. 人工智能专利申请数量呈上升趋势。截至2023年,中国在人工智能专利总数上领先,占所有授权专利的69.7%,而韩国和卢森堡在人均人工智能专利产出方面表现突出。

  8. 人工智能硬件的速度更快、成本更低且能源效率更高。新的研究表明,以16位浮点运算来衡量的机器学习硬件性能每年增长43%,每1.9年翻一番。性价比得到了提升,成本每年下降30%,同时能源效率每年提高40%。

  9. 人工智能训练所产生的碳排放稳步增加。训练早期的人工智能模型,如AlexNet(2012年),碳排放仅为0.01吨。而较新的模型在训练时的碳排放则显著更高:GPT-3(2020年)为588吨,GPT-4(2023年)为5184吨,Llama 3.1 405B(2024年)为8930吨。作为参考,美国人平均每年的碳排放量为18吨。

第二章:技术性能

  1. 人工智能比以往任何时候都更快地掌握新的基准测试。2023年,人工智能研究人员推出了几个具有挑战性的新基准测试,包括MMMU、GPQA和SWE-bench,旨在测试能力日益增强的人工智能系统的极限。到2024年,人工智能在这些基准测试上的表现有了显著提升,在MMMU上提高了18.8个百分点,在GPQA上提高了48.9个百分点。在SWE-bench测试中,2023年人工智能系统只能解决4.4%的编码问题,而这一数字在2024年跃升至71.7%。

  2. 开源权重模型迎头赶上。去年的《人工智能指数报告》显示,领先的开源权重模型明显落后于闭源权重模型。到2024年,这一差距几乎消失。2024年1月初,在聊天机器人竞技场排行榜(Chatbot Arena Leaderboard)上,领先的闭源权重模型比顶级开源权重模型高出8.0%。到2025年2月,这一差距缩小到了1.7%。

  3. 中美模型之间的差距缩小。2023年,美国的领先模型性能明显优于中国的模型——但这一趋势已不复存在。2023年底,在MMLU、MMMU、MATH和HumanEval等基准测试上的性能差距分别为17.5、13.5、24.3和31.6个百分点。到2024年底,这些差距大幅缩小至0.3、8.1、1.6和3.7个百分点。

  4. 人工智能模型的性能在前沿领域趋于一致。根据去年的《人工智能指数报告》,聊天机器人竞技场排行榜上排名第一和第十的模型之间的埃洛评分(Elo score)差距为11.9%。到2025年初,这一差距缩小到了5.4%。同样,排名前两位的模型之间的差距从2023年的4.9%缩小到2024年的仅0.7%。人工智能领域的竞争日益激烈,如今越来越多的开发者能够开发出高质量的模型。

  5. 像“测试时计算”这样的新推理范式提高了模型性能。2024年,OpenAI推出了o1和o3等模型,这些模型旨在对其输出进行迭代推理。这种测试时计算方法极大地提高了性能,o1在国际数学奥林匹克竞赛资格考试中得分74.4%,而GPT-4o的得分仅为9.3%。然而,这种增强的推理能力是有代价的:o1的成本几乎是GPT-4o的六倍,速度则慢30倍。

  6. 更具挑战性的基准测试不断被提出。像MMLU、GSM8K和HumanEval这样的传统人工智能基准测试已趋于饱和,再加上在MMMU和GPQA等更新、更具挑战性的基准测试上性能的提升,促使研究人员探索对领先人工智能系统的其他评估方法。其中值得注意的有“人类的终极考试”(Humanity’s Last Exam),这是一项严格的学术测试,表现最好的系统得分仅为8.80%;前沿数学(FrontierMath),一个复杂的数学基准测试,人工智能系统只能解决其中2%的问题;以及大代码基准测试(BigCodeBench),一个编码基准测试,人工智能系统的成功率为35.5%,远低于人类97%的标准。

  7. 高质量的人工智能视频生成器有了显著改进。2024年,推出了几款能够根据文本输入生成高质量视频的先进人工智能模型。值得关注的发布成果包括OpenAI的SORA、Stable Video Diffusion 3D和4D、Meta的Movie Gen以及谷歌DeepMind的Veo 2。与2023年的模型相比,这些模型生成的视频质量有了显著提高。

  8. 较小的模型实现了更强的性能。2022年,在MMLU上得分超过60%的最小模型是PaLM,拥有5400亿个参数。到2024年,微软的Phi-3-mini模型仅拥有38亿个参数,却达到了相同的阈值——相当于在两年内参数数量减少了142倍。

  9. 复杂推理仍然是挑战。尽管诸如思维链推理等机制的加入显著提高了大语言模型(LLM)的性能,但这些系统仍然无法可靠地解决那些可以通过逻辑推理得出可证明正确答案的问题,比如算术和规划问题,尤其是当问题的规模大于它们所训练的样本时。这对这些系统的可信度以及它们在高风险应用中的适用性产生了重大影响。

  10. AI 智能体展现出初步潜力。2024年推出的RE-Bench为评估人工智能智能体的复杂任务引入了一个严格的基准测试。在短时间限制(两小时预算)的情况下,顶级人工智能系统的得分是人类专家的四倍,但随着时间预算的增加,人类的表现会超过人工智能——在32小时时,人类的得分是人工智能的两倍。人工智能智能体在某些特定任务上已经达到了人类专家的水平,比如编写Triton内核,同时还能以更快的速度和更低的成本得出结果。

第三章:负责任的人工智能

  1. 依据负责任人工智能(RAI)标准评估人工智能系统的情况仍不常见,但新的基准测试正开始涌现。去年的《人工智能指数报告》强调了大语言模型缺乏标准化的负责任人工智能基准测试这一问题。尽管这一问题依然存在,但像HELM Safety和AIR-Bench这样的新基准测试有助于填补这一空白。

  2. 人工智能事件报告的数量持续增加。根据人工智能事件数据库,2024年报告的与人工智能相关的事件数量上升至233起,创下历史新高,比2023年增长了56.4%。

  3. 各组织认识到了负责任人工智能的风险,但缓解措施却滞后。麦肯锡关于各组织参与负责任人工智能情况的一项调查显示,虽然许多组织识别出了负责任人工智能的关键风险,但并非所有组织都在采取积极措施来应对这些风险。包括不准确、合规监管以及网络安全等风险是领导者们最为关注的问题,分别只有64%、63%和60%的受访者将其列为担忧事项。

  4. 在全球范围内,政策制定者对负责任人工智能表现出了浓厚的兴趣。2024年,全球在人工智能治理方面的合作加强,重点在于明确达成共识的负责任人工智能原则。包括经济合作与发展组织(OECD)、欧盟、联合国和非洲联盟在内的几个主要组织发布了相关框架,以阐明负责任人工智能的关键问题,如透明度、可解释性和可信度等。

  5. 数据共享资源正在迅速减少。人工智能模型依赖大量公开可用的网络数据进行训练。最近的一项研究发现,从2023年到2024年,数据使用限制显著增加,因为许多网站实施了新的协议来遏制用于人工智能训练的数据抓取行为。在C4公共爬虫数据集中处于积极维护状态的域名中,受限标记的比例从5% - 7%跃升至20% - 33%。这种减少会对数据多样性、模型校准和可扩展性产生影响,也可能会催生在数据受限情况下进行学习的新方法。

  6. 基础模型研究的透明度有所提高,但仍有更多工作要做。更新后的基础模型透明度指数(一个跟踪基础模型生态系统中透明度的项目)显示,主要模型开发者的平均透明度得分从2023年10月的37%提高到了2024年5月的58%。尽管这些进步令人鼓舞,但仍有相当大的改进空间。

  7. 出现了更好的关于真实性和准确性的基准测试。早期旨在评估人工智能模型真实性和准确性的基准测试,如HaluEval和TruthfulQA,未能在人工智能社区中得到广泛采用。作为回应,出现了更新且更全面的评估方法,如更新后的休斯幻觉评估模型排行榜(Hughes Hallucination Evaluation Model leaderboard)、FACTS和SimpleQA。

  8. 与人工智能相关的选举虚假信息在全球范围内传播,但其影响尚不明朗。2024年,在十几个国家以及10多个社交媒体平台上出现了许多与人工智能相关的选举虚假信息的例子,其中包括美国的总统选举期间。然而,关于这一问题的可衡量影响仍存在疑问,许多人原本预计虚假信息宣传活动对选举的影响会比实际情况更深远。

  9. 经过训练以明确消除偏差的大语言模型仍然表现出隐性偏差。许多先进的大语言模型,包括GPT-4和Claude 3 Sonnet,在设计时都采取了措施来遏制显性偏差,但它们仍然表现出隐性偏差。这些模型更多地将负面词汇与黑人个体联系起来,更常将女性与人文领域而非科学、技术、工程和数学(STEM)领域联系起来,并且在领导角色方面更倾向于男性,从而在决策过程中强化了种族和性别偏见。尽管在标准基准测试中偏差指标有所改善,但人工智能模型的偏差仍然是一个普遍存在的问题。

  10. 负责任人工智能受到了学术研究人员的关注。在主要人工智能会议上被接受的负责任人工智能论文数量增长了28.8%,从2023年的992篇增加到2024年的1278篇,自2019年以来持续稳步增长。这一上升趋势凸显了负责任人工智能在人工智能研究领域中日益重要的地位。

第四章:经济

  1. 全球私人人工智能投资创下历史新高,增长了26%。2024年企业人工智能投资达到2523亿美元,其中私人投资增长了44.5%,并购规模比上一年增长了12.1%。在过去十年中,该领域经历了大幅扩张,自2014年以来总投资增长了超过13倍。

  2. 生成式人工智能领域的资金大幅增加。2024年,生成式人工智能的私人投资达到339亿美元,比2023年增长了18.7%,是2022年水平的8.5倍多。该领域目前占所有人工智能相关私人投资的20%以上。

  3. 美国在全球人工智能私人投资方面的领先优势扩大。2024年,美国的私人人工智能投资达到1091亿美元,几乎是中国(93亿美元)的12倍,英国(45亿美元)的24倍。在生成式人工智能领域,差距更为明显,美国的投资比中国、欧盟和英国的总和还多254亿美元,相较于2023年218亿美元的差距进一步扩大。

  4. 人工智能的应用攀升至前所未有的水平。2024年,报告其所在组织使用人工智能的调查受访者比例从2023年的55%跃升至78%。同样,报告在至少一项业务职能中使用生成式人工智能的受访者数量增加了一倍多,从2023年的33%上升到去年的71%。

  5. 人工智能开始在各个业务职能领域产生财务影响,但大多数公司仍处于起步阶段。大多数报告在某一业务职能中使用人工智能产生了财务影响的公司,都估计其带来的好处处于较低水平。在服务运营中使用人工智能的受访者中,49%表示实现了成本节约,其次是供应链管理(43%)和软件工程(41%),但其中大多数人表示成本节约幅度不到10%。在收入方面,在营销和销售中使用人工智能的受访者中有71%表示收入有所增加,在供应链管理中为63%,在服务运营中为57%,但最常见的收入增长幅度不到5%。

  6. 人工智能的应用在不同地区呈现出巨大变化,大中华地区取得进展。尽管北美在组织使用人工智能方面保持领先地位,但大中华地区的人工智能应用率同比增长幅度最大,组织使用人工智能的比例增加了27个百分点。欧洲紧随其后,增长了23个百分点,这表明全球人工智能格局正在迅速演变,人工智能应用方面的国际竞争日益激烈。

  7. 尽管增长略有放缓,中国在工业机器人领域的主导地位依然稳固。2023年,中国安装了276300台工业机器人,是日本的6倍,美国的7.3倍。自2013年中国超越日本(当时中国的工业机器人安装量占全球的20.8%)以来,其占比已上升至51.1%。虽然中国安装的机器人数量仍比世界其他地区的总和还要多,但这一差距在2023年略有缩小,表明其迅猛扩张的势头稍有缓和。

  8. 协作型和交互型机器人的安装越来越普遍。2017年,协作型机器人仅占所有新安装工业机器人的2.8%,到2023年这一比例已攀升至10.5%。同样,2023年除了医疗机器人外,所有应用类别的服务机器人安装量都有所增加。这一趋势不仅表明机器人安装总量在增加,也显示出人们越来越重视部署机器人来承担与人直接相关的工作。

  9. 人工智能正在推动能源结构发生重大转变,引发了对核能的关注。微软宣布了一项16亿美元的协议,重启三里岛核电站以为人工智能供电,而谷歌和亚马逊也已达成核能协议,以支持人工智能业务的运行。

  10. 人工智能提高了生产力并缩小了技能差距。去年的《人工智能指数报告》是最早强调人工智能对生产力有积极影响的研究报告之一。今年,更多的研究进一步证实了这些发现,确认人工智能能够提高生产力,并且在大多数情况下,有助于缩小低技能和高技能工人之间的差距。

第五章:科学与医学

  1. 更大且更优秀的蛋白质测序模型涌现。2024年,包括ESM3和AlphaFold 3在内的几款大规模、高性能的蛋白质测序模型发布。随着时间推移,这些模型的规模大幅增长,使得蛋白质预测的准确性不断提高。

  2. 人工智能持续推动科学发现的快速进步。人工智能在科学发展中所起的作用持续扩大。2022年和2023年是人工智能驱动的突破的早期阶段,而2024年带来了更大的进展,包括用于训练执行生物任务的大语言模型智能体的Aviary,以及显著提升野火预测能力的FireSat。

  3. 领先的大语言模型的临床知识水平持续提升。OpenAI最近发布的o1在MedQA基准测试中取得了96.0%的新的最先进成绩,比2023年的最佳成绩高出5.8个百分点。自2022年末以来,成绩提升了28.4个百分点。MedQA作为评估临床知识的关键基准测试,可能正接近饱和状态,这表明需要更具挑战性的评估方式。

  4. 人工智能在关键临床任务上表现优于医生。一项新研究发现,仅GPT-4在诊断复杂临床病例方面就超过了医生(包括使用和不使用人工智能的医生)。最近的其他研究表明,人工智能在癌症检测和识别高死亡风险患者方面超过了医生。然而,一些早期研究表明,人工智能与医生的合作能产生最佳结果,这使其成为一个值得进一步深入研究的领域。

  5. 美国食品药品监督管理局(FDA)批准的搭载人工智能的医疗设备数量激增。1995年,FDA批准了首款搭载人工智能的医疗设备。到2015年,仅有6款此类设备获批,但到2023年,这一数字飙升至223款。

  6. 合成数据在医学领域展现出巨大潜。2024年发布的研究表明,人工智能生成的合成数据可以帮助模型更好地识别健康的社会决定因素,增强保护隐私的临床风险预测能力,并促进新药物化合物的发现。

  7. 医学人工智能伦理方面的出版物数量逐年增加。从2020年到2024年,关于医学人工智能伦理的出版物数量几乎翻了两番,从2020年的288篇增加到2024年的1031篇。

  8. 基础模型进军医学领域。2024年,涌现出了一批大规模的医学基础模型,从像Med-Gemini这样的通用多模态模型,到诸如用于超声心动图的EchoCLIP、用于眼科的VisionFM以及用于放射学的ChexAgent等专业模型。

  9. 公开可用的蛋白质数据库规模不断扩大。自2021年以来,主要的公开蛋白质科学数据库中的条目数量显著增加,其中包括UniProt(增加31%)、PDB(增加23%)和AlphaFold(增加585%)。这种扩展对科学发现具有重要意义。

  10. 人工智能研究获得两项诺贝尔奖认可。2024年,人工智能驱动的研究获得了最高荣誉,两项诺贝尔奖授予了与人工智能相关的突破成果。谷歌DeepMind的杰米斯·哈萨比斯(Demis Hassabis)和约翰·朱珀(John Jumper)因使用AlphaFold在蛋白质折叠方面的开创性工作而获得诺贝尔化学奖。与此同时,约翰·霍普菲尔德(John Hopfield)和杰弗里·辛顿(Geoffrey Hinton)因对神经网络的基础性贡献而获得诺贝尔物理学奖。

第六章:政策与监管

  1. 在美国联邦层面人工智能立法进展缓慢的情况下,各州在这方面处于领先地位。2016年,仅有一项州级人工智能相关法律获得通过,到2023年这一数字增加到了49项。仅在过去的一年里,这个数字就增加了一倍多,达到131项。虽然联邦层面提出的人工智能法案数量也有所增加,但通过的数量仍然很少。

  2. 世界各国政府都在对人工智能基础设施进行投资。加拿大宣布了一项价值24亿美元的人工智能基础设施投资计划,而中国推出了一项475亿美元的基金以促进半导体生产。法国承诺向人工智能基础设施投入1170亿美元,印度承诺投入12.5亿美元,沙特阿拉伯的“超越计划”包括对人工智能的1000亿美元投资。

  3. 在全球范围内,立法程序中对人工智能的提及次数持续上升。2024年,在75个国家的立法程序中,提及人工智能的次数比2023年增加了21.3%,从2023年的1557次上升到1889次。自2016年以来,提及人工智能的总次数增长了九倍多。

  4. 人工智能安全机构在全球范围内不断扩展并进行协调。2024年,世界各国纷纷成立了国际性的人工智能安全机构。2023年11月,在首届人工智能安全峰会之后,美国和英国率先成立了此类机构。在2024年5月的首尔人工智能峰会上,日本、法国、德国、意大利、新加坡、韩国、澳大利亚、加拿大和欧盟等国家和地区也承诺成立相关机构。

  5. 美国与人工智能相关的联邦法规数量激增。2024年,美国出台了59项与人工智能相关的法规,这一数量是2023年记录的25项的两倍多。这些法规来自42个不同的机构,是2023年发布法规的21个机构数量的两倍。

  6. 美国各州扩大了对深度伪造技术(Deepfake)的监管范围。在2024年之前,只有加利福尼亚州、密歇根州、华盛顿州、得克萨斯州和明尼苏达州这五个州制定了监管选举中深度伪造技术的法律。2024年,包括俄勒冈州、新墨西哥州和纽约州在内的另外15个州也出台了类似的措施。此外,到2024年,已有24个州通过了针对深度伪造技术的法规。 关于各国AI安全机构的主要职责,目前文中未提及相关内容,难以准确回答。一般来说,可能包括制定和推广人工智能安全标准和规范、开展人工智能安全研究、评估人工智能系统的安全风险、协调国际间在人工智能安全方面的合作、对人工智能的开发和应用进行安全监督等。

第七章:教育

  1. 美国高中计算机科学(CS)课程的入学率和选课率较上一学年略有上升,但差距依然存在。学生的参与情况因州、种族和族裔、学校规模、地理位置、收入、性别和残疾状况而异。

  2. 美国的计算机科学教师希望教授人工智能,但觉得自己没有足够的能力。尽管81%的计算机科学教师认同在计算机科学基础学习中应该包含人工智能的使用和相关学习内容,但只有不到一半的高中计算机科学教师觉得自己有能力教授人工智能。

  3. 全球三分之二的国家已经开设或计划开设K - 12阶段的计算机科学教育。自2019年以来,这一比例翻了一番,其中非洲和拉丁美洲国家进步最大。然而,由于学校缺电,非洲国家的学生接受计算机科学教育的机会最少。

  4. 2022年至2023年间,美国人工智能专业的硕士学位毕业生数量几乎翻了一番。虽然人工智能相关的学士和博士学位数量增长相对缓慢,但硕士学位数量的激增可能预示着所有学位层次都有这样一种发展趋势。

  5. 美国在培养各级信息、技术和通信(ICT)毕业生方面继续保持全球领先地位。西班牙、巴西和英国在各级毕业生培养方面紧随美国之后,而土耳其在性别平等方面表现最佳。

第八章:公众态度

  1. 世界对人工智能产品和服务的态度变得更加谨慎乐观。益普索(Ipsos)在2022年和2024年对26个国家进行的调查显示,其中18个国家认为人工智能产品和服务利大于弊的人数比例有所上升。从全球范围来看,认为人工智能产品和服务利大于弊的个人比例已从2022年的52%上升到2024年的55%。

  2. 人们对人工智能影响日常生活的预期和认知在不断提高。在全球范围内,现在有三分之二的人认为,由人工智能驱动的产品和服务将在未来三到五年内对日常生活产生重大影响,这一比例自2022年以来增加了6个百分点。自2022年以来,除了马来西亚、波兰和印度之外,其他所有国家持这种看法的人数都有所增加,其中加拿大(增长17%)和德国(增长15%)的增幅最大。

  3. 对人工智能公司道德行为的质疑在增加,而对人工智能公平性的信任在下降。从全球来看,对人工智能公司能够保护个人数据的信心从2023年的50%下降到了2024年的47%。同样,与去年相比,如今认为人工智能系统没有偏见且不存在歧视的人更少了。

  4. 对人工智能的乐观态度在不同地区仍存在差异。正如2023年《人工智能指数报告》首次指出的那样,不同地区对人工智能的乐观态度存在显著差异。在中国(83%)、印度尼西亚(80%)和泰国(77%)等国家,绝大多数人认为人工智能驱动的产品和服务利大于弊,而在加拿大(40%)、美国(39%)和荷兰(36%),只有少数人持这种观点。

  5. 美国人对自动驾驶汽车仍然不信任。美国汽车协会最近的一项调查发现,61%的美国人害怕自动驾驶汽车,只有13%的人信任它们。尽管表示害怕的比例已从2023年的峰值68%有所下降,但仍高于2021年的54%。

  6. 美国地方政策制定者广泛支持对人工智能进行监管。2023年,美国涵盖乡镇、市级和县级的73.7%的地方政策制定者认同应该对人工智能进行监管,这一比例较2022年的55.7%大幅上升。民主党人(79.2%)对监管的支持力度强于共和党人(55.5%),不过两党在2023年的支持率相较于2022年都有显著提高。

  7. 在先前最为怀疑人工智能的国家中,对人工智能的乐观情绪急剧上升。从全球来看,对人工智能产品和服务的乐观情绪有所增加,在先前最为怀疑人工智能的国家中增幅最为明显。2022年,英国(38%)、德国(37%)、美国(35%)、加拿大(32%)和法国(31%)是最不认为人工智能利大于弊的国家之列。从那以后,这些国家对人工智能的乐观情绪分别增长了8%、10%、4%、8%和10%。

  8. 员工期望人工智能重塑工作,但对被取代的担忧程度有所降低。在全球范围内,60%的受访者认同人工智能将在未来五年内改变个人的工作方式。然而,只有36%的受访者认为人工智能会在未来五年内取代他们的工作。

  9. 美国地方政策制定者在人工智能政策重点方面存在严重分歧。虽然美国地方政策制定者普遍支持对人工智能进行监管,但他们的重点各不相同。支持率最高的是更严格的数据隐私规则(80.4%)、为失业者提供再培训(76.2%)以及人工智能部署监管(72.5%)。然而,对于禁止执法部门使用面部识别技术(34.2%)、因工资下降提供工资补贴(32.9%)以及实行普遍基本收入(24.6%)的支持率则大幅下降。

  10. 人们认为人工智能可以节省时间并提升娱乐体验,但对其经济影响仍存疑虑。全球对人工智能影响的看法各不相同。虽然55%的人认为它可以节省时间,51%的人期望它能提供更好的娱乐选择,但对其在健康或经济方面带来好处有信心的人较少。只有38%的人认为人工智能会改善健康状况,36%的人认为人工智能会促进国家经济发展,31%的人认为它会对就业市场产生积极影响,37%的人认为它会改善自己的工作。

报告目录

图片

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值