OpenAI 正式发布 GPT-4.1 系列模型,主打百万级上下文、增强的代码能力与更自然的指令理解体验。新版在性能、效率和实用性上全面升级,特别适合处理复杂任务和构建高效 agents。
-
1. 百万上下文 + 强劲代码能力
-
2. 模型扎堆更新
-
3. 为什么大家都在疯狂提升“编程能力”?
-
4. RAG 要“退场”了吗?
-
总结一下
-- 领取学习资料大礼包,见文末
2025 年 4 月 14 日,OpenAI 官宣推出全新的 GPT-4.1 系列模型,包括 GPT-4.1、GPT-4.1 Mini 和 GPT-4.1 Nano。
这次更新可以说是一次全方位的提升,尤其在代码生成和指令理解上表现非常亮眼。还搭载了当前行业内领先的百万级 token 上下文窗口,直接拉高了长文本处理的行业标准。
目前 GPT-4.1 系列已经对开发者开放使用。
其中,GPT-4.1 Mini 是定位更亲民、适合开发探索的版本;
GPT-4.1 Nano 则是体积更小、速度更快、价格更便宜,非常适合轻量级场景。OpenAI 也表示,这是他们目前为止“最小、最快、最省钱”的模型。
1. 百万上下文 + 强劲代码能力
GPT-4.1 一大升级,是他那令人瞠目的 100 万个 token 的上下文窗口。
大概可以一次性处理 8 套完整的 React 代码库,轻松应对法律文件、技术论文、大型多轮对话等高复杂度任务。相比之下,GPT-4.5 的 128K token 限制已经被远远甩在后头。
而在代码能力上,GPT-4.1 也表现得非常抢眼。GPT‑4.1 在 SWE-bench Verified 上的得分为 54.6%,相比于 GPT‑4o 提高了 21.4% ,相比于 GPT‑4.5 提高了 26.6%。
❝Windsurf:GPT‑4.1 在 Windsurf 的内部编码基准测试中的得分比 GPT‑4o 高出 60%,这一基准测试与代码在第一次审核时被接受的频率有很强的相关性。
它在工具调用方面的效率提高了 30%,并且大约减少了 50%不必要的重复编辑。这些改进使工程团队的迭代速度更快,工作流程更加顺畅。
GPT-4.1 在指令理解上也做了不少优化,用户不用重复输入一堆说明,模型就能准确理解意图,互动体验更自然了。
这些在指令执行的可靠性和长文本理解能力上的改进,使得 GPT-4.1 模型在支持 agents 方面变得更加高效。开发者现在能够构建出解决复杂任务中更加有用且可靠的agents。
2. 模型扎堆更新
最近,各大公司基本都在密集发布新模型。
比如 Google 推出的 Gemini 2.5 Pro,在多模态推理方面下了不少功夫,能同时处理文本、图片、代码等多种输入。
Gemini 2.5 Pro 在视觉吸人的 Web 应用和自主代码应用方面表现卓越,同时在代码转换和编辑上也表现优异。
在自主代码评估工具 SWE-Bench Verified 中,Gemini 2.5 Pro 得分为 63.8%,非常适合拿来构建复杂的 AI 应用。
而作为开源的 DeepSeek-V3, 在算法类代码场景(Codeforces),远远领先于市面上已有的全部非 o1 类模型;并在工程类代码场景(SWE-Bench Verified)逼近 Claude-3.5-Sonnet-1022。
而且最近推出的 V3-0324版本,在 HTML 等代码前端任务上,生成的代码可用性更高,视觉效果也更加美观、富有设计感。
3. 为什么大家都在疯狂提升“编程能力”?
不难发现,现在这些模型似乎都在拼命强化编程相关的能力。这是为什么呢?
可能有三个主要原因:
第一是市场真的需要。现在软件开发越来越复杂,开发者急需更聪明的工具帮他们提高效率,减少重复劳动;
第二是模型本身确实有优势。AI 在处理代码这类结构化语言上天生就比其他任务容易做得好,生成代码、理解逻辑、优化结构,对它们来说都不算太难;
第三当然就是商业价值了。代码相关的任务和企业的效率、成本直接挂钩,一旦做得好,就有非常大的落地空间和利润空间。
所以说,AI 模型越来越偏向“程序员助手”,既是技术演进的结果,也是现实需求和商业驱动共同作用的产物。
不过最后秃头的,还是程序猿。
4. RAG 要“退场”了吗?
GPT‑4.1 系列模型的上下文窗口已经扩大到了 100 万 token,对比 GPT‑4o 的 128K,提升了好几个量级。
这个体量让它可以轻松处理超大规模的代码库,比如一次吃下整套 React 项目,或者长篇论文、报告合集等。
从官方公布的数据来看,它对上下文的理解比之前更稳,能更好地识别哪些内容是关键的、哪些是干扰信息,不管你给它短内容还是长内容,它都能应对自如。
Gemini 2.5 Pro 也是具备原生多模态能力和较长的上下文窗口。 现在是提供 100 万个令牌的上下文窗口,未来更是将增加至 200 万个。
那么问题来了:
现在模型自己能记住那么多东西,那还需要 RAG(检索增强生成)架构吗?
答案其实并不简单。
虽然长上下文模型很强,但 RAG 并没有“过时”,它依然有几个重要用途:
-
模型本身没法实时访问企业内部的数据,这类信息更新快,而且通常不包含在训练数据里;
-
即便模型更新频率加快,训练数据和现实之间还是会有时间差;
-
模型容易“幻觉”,也就是一本正经地胡说八道。RAG 通过引用真实数据源、生成可验证的答案,能有效降低这种风险。
所以,长上下文模型虽然猛,但 RAG 并不会消失,反而能和这些大模型更好地互补使用,各司其职、各显其能。
❝RAG 论文(Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks)作者关于RAG退场的观点: https://contextual.ai/blog/is-rag-dead-yet/
总结一下
从 GPT-4.1 到 Gemini 2.5 Pro,再到 DeepSeek V3-0324,不管是代码能力、长文本处理,还是多模态推理,各大模型都在快速进化。
对开发者来说,这是一个工具库越来越丰富的时代。不管你是在做 AI 应用开发,还是研究大模型底层逻辑,现在都有更多选择、更高性能和更好的性价比去实现你的想法。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓