李飞飞团队:AI,一场临床医学的“智能觉醒”

李飞飞团队

AI,一场临床医学的

“智能觉醒”

PART 01

概述

4月7日,斯坦福以人为本人工智能研究所(HAI)发布《2025年AI指数报告》,这份长达456页的报告,全景展示了过去一年AI领域的关键进展。以人为本人工智能研究所是斯坦福大学于2019 年成立的跨学科研究机构,由“AI教母”李飞飞联合领导,其每年发布的“AI指数报告”成为全球人士了解人工智能前沿发展的核心文件。具体来看,今年的报告共列了研究与开发、技术性能、负责任的AI、经济、科学与医学、政策与治理、教育等8个章节,其中科学与医学占据43页内容。

在科学与医学中,报告重点介绍了2024年医学和生物学领域的AI里程碑,展示了AI在医学影像、临床试验、辅助诊断等领域的进展,彰显出AI在医疗保健的关键影响。

图片

PART 02

从数据洪流到临床智慧

AI正在改写诊疗规则  

2023年春季,斯坦福大学李飞飞团队在《自然·医学》发表的论文引发行业震动。他们的多模态AI系统不仅能够解析CT影像中的细微病变,更能结合电子病历中的病程描述,甚至捕捉医生问诊时的微表情——这种突破性的"临床情境理解"能力,将AI辅助诊断准确率提升至92.7%,首次超越资深住院医师的基准线。  

"这不是简单的模式识别,而是让AI真正理解医疗场景的复杂性。"李飞飞在采访中这样描述。团队将临床决策拆解为2000余个逻辑节点,构建出涵盖症状学、病理生理学、循证医学的认知图谱。当遇到不典型胸痛患者时,系统能自动关联32种鉴别诊断,并动态评估每个选项的临床合理性。  

PART 03

临床医生的"数字分身"

AI如何重构诊疗流程

在中山医院心内科的试点中,这套系统展现出惊人的适配性:  

·  预问诊阶段:通过自然语言处理技术,AI能在3分钟内完成传统20分钟的标准病史采集,准确抓取87%的关键症状线索  

· 影像判读环节:对早期肺小结节的检出率达到94.3%,较人工阅片提升18个百分点  

· 治疗方案优化:基于300万份真实世界疗效数据,为高血压合并肾病患者推荐个性化用药方案,使药物不良反应率下降41%  

"最让我惊讶的是AI的进化速度。"参与项目的张主任医师说,"系统每周都会吸收最新诊疗指南和病例数据,就像有个永不疲倦的规培生在持续成长。"  

PART 04

超越工具属性

如何重构诊疗流程

2023年春季,斯坦福大学李飞飞团队在《自然·医学》发表的论文引发行业震动。他们的多模态AI系统不仅能够解析CT影像中的细微病变,更能结合电子病历中的病程描述,甚至捕捉医生问诊时的微表情——这种突破性的"临床情境理解"能力,将AI辅助诊断准确率提升至92.7%,首次超越资深住院医师的基准线。  

"这不是简单的模式识别,而是让AI真正理解医疗场景的复杂性。"李飞飞在采访中这样描述。团队将临床决策拆解为2000余个逻辑节点,构建出涵盖症状学、病理生理学、循证医学的认知图谱。当遇到不典型胸痛患者时,系统能自动关联32种鉴别诊断,并动态评估每个选项的临床合理性。  

PART 05

临床医学的"智能增强"时代

医生与AI的新型伙伴关系

在武汉协和医院的MDT多学科会诊中,AI已扮演独特角色:  

·  知识管家:实时调取最新临床试验数据、药物相互作用信息  

·  风险哨兵:提前12小时预警重症患者的病情恶化趋势  

·  流程优化师:自动生成符合医保规范的病历文书,节省40%文书时间  

"AI不是要取代医生,而是让我们回归医疗的本质。"李飞飞强调。当机器承担起知识检索、数据整合等基础工作,医生得以将更多精力投入医患沟通与复杂决策——这或许正是智能医疗最具人文价值的进化方向。  

PART 06

深研智医

AI赋能医学,科研引领未来

深研智医汇聚全球顶尖AI与医学专家,以前DeepMind、Google、Meta算法架构师为核心,携手斯坦福、MIT、CMU等名校科学家团队,构建跨学科“AI医学特战队”。我们以「医学+AI+学术」的复合能力为基石,专注于多模态医疗数据的深度挖掘与价值提炼,推动从数据到科研成果的高效转化,攻克疾病难题,为人类健康带来更多福祉。

图片

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值