“ Embedding和Rerank模型是RAG系统中的核心模型。”
在RAG系统中,有两个非常重要的模型一个是Embedding模型,另一个则是Rerank模型;这两个模型在RAG中扮演着重要角色。
Embedding模型的作用是把数据向量化,通过降维的方式,使得可以通过欧式距离,余弦函数等计算向量之间的相似度,以此来进行相似度检索。
而Rerank的作用是在Embedding检索的基础之上,进行更加准确的数据筛选;如果说Embedding模型进行的是一维筛选,那么Rerank模型就是从多个维度进行筛选。
Embedding模型和Rerank模型
在自然语言处理和信息检索系统中,Embedding模型和Rerank模型是两类功能不同但常结合使用的技术。
Embedding和Rerank模型都是基于深度学习方式实现的神经网络模型,但由于其功能不同,因此其实现方式和训练方法也有一定的区别。
从使用的角度来看,Embedding一般用于数据向量化并快速检索,而Rerank模型是在快速检索的基础之上进行重排序,提升相似度。
但从技术实现的角度来说,两种模型使用的学习方式和架构是不一样的;原因就在于两个模型的实现目的和处理数据的方式。
它们的核心区别在于目标、应用阶段和技术实现。以下是详细对比:
1. 功能目标
维度 | Embedding模型 | Rerank模型 |
---|---|---|
核心任务 | 将文本转化为低维向量,捕捉语义信息 | 对候选结果重新排序,提升相关性 |
输出形式 | 高维或低维向量(如768维向量) | 候选列表的排序分数(如相关性得分) |
关注点 | 文本的全局语义表示 | 候选结果与查询的细粒度匹配 |
示例
-
Embedding模型:将“如何训练神经网络?”转换为向量,用于检索相似问题。
-
Rerank模型:对初步检索的100个答案排序,将最相关的答案排到前3。
2. 应用阶段
维度 | Embedding模型 | Rerank模型 |
---|---|---|
所处流程 | 检索阶段 :快速生成候选集 | 精排阶段 :优化候选集的顺序 |
数据规模 | 处理海量数据(如百万级文档) | 处理小规模候选集(如Top 100~1000) |
性能要求 | 要求高效(毫秒级响应) | 可接受较高延迟(需复杂计算) |
典型场景
-
Embedding模型:用于搜索引擎的初步召回(如从10亿文档中筛选出Top 1000)。
-
Rerank模型:在推荐系统中对Top 100结果精细化排序,提升点击率。
3. 技术实现
维度 | Embedding模型 | Rerank模型 |
---|---|---|
模型类型 | 无监督/自监督学习(如BERT、Sentence-BERT) | 有监督学习(如Pairwise Ranking、ListNet) |
输入输出 | 单文本输入 → 固定维度向量 | 查询+候选文本对 → 相关性分数 |
特征依赖 | 仅依赖文本本身的语义信息 | 可融合多特征(语义、点击率、时效性等) |
模型举例
-
Embedding模型:
-
通用语义编码:BERT、RoBERTa
-
专用场景:DPR(Dense Passage Retrieval)
-
-
Rerank模型:
-
传统方法:BM25 + 特征工程
-
深度模型:ColBERT、Cross-Encoder
-
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓