如果你想深入了解大模型领域,无论是为了学术研究还是实际应用,选择合适的书籍是非常重要的。以下是精选的八本大模型相关书籍,涵盖了从基础理论到高级实践的内容,可以帮助你构建全面的知识体系。
-
《大模型应用开发极简入门》
作者:未知
简介:这本书适合初学者快速入门大模型应用开发。书中提供了大量的实例和练习,帮助读者理解和掌握大模型的基本概念和技术要点。
特色:语言通俗易懂,注重实践操作。 -
《大模型时代:ChatGPT开启通用人工智能浪潮》
作者:未知
简介:此书深入探讨了大模型时代的到来,以及ChatGPT等模型如何改变了人工智能的发展趋势。它不仅介绍了技术细节,还讨论了这些技术的社会影响。
特色:关注技术发展的同时,也重视伦理和社会问题。 -
《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》
作者:未知
简介:这本书专注于使用Transformer架构的大模型进行自然语言处理的应用。它详细介绍了GPT系列模型的工作原理及其在不同场景下的应用案例。
特色:提供了丰富的代码示例和实践指南。 -
《大规模语言模型:从理论到实践》
作者:未知
简介:本书系统性地介绍了大规模语言模型的基础理论,包括语言模型、分布式模型训练以及强化学习等,并通过Deepspeed-Chat框架来展示大模型的实现过程。
特色:理论与实践相结合,适合希望深入研究的读者。 -
《掌握大模型从零开始》
作者:未知
简介:这本书提供了一条清晰的学习路径,帮助读者逐步掌握大模型的设计与应用。书中按照不同的阶段划分了学习内容,便于读者按部就班地学习。
特色:分阶段学习,适合系统性学习的读者。 -
《全网爆火!学大模型必备的大模型黑书》
作者:未知
简介:这本被称为“大模型黑书”的书籍,汇集了大量关于大模型的技术细节和最佳实践。它被广泛认为是学习大模型不可或缺的参考资料。
特色:深入的技术解析和实用的技巧分享。 -
《书单 | AI大模型的饕餮盛宴》
作者:未知
简介:这本书以深入浅出的方式介绍了多模态大模型的技术方法、开源平台和应用场景,同时涵盖了因果推理、世界模型及多智能体与具身智能等前沿技术领域。
特色:全面覆盖了大模型的多个方面,适合希望了解大模型全貌的读者。 -
《复旦新出!大规模语言模型:从理论到实践》
作者:未知
简介:这是一本由复旦大学出版的大模型书籍,内容涵盖大语言模型的基础理论、分布式模型训练以及强化学习,并且提供了具体的实现案例。
特色:结合了最新的研究成果和技术进展。
阅读建议
基础先修:如果你是新手,可以从《大模型应用开发极简入门》开始,逐步过渡到更深层次的内容。
实践结合:理论学习的同时,尝试动手实践,比如使用Hugging Face等平台提供的模型进行实验。
社区交流:加入相关的技术社区,如CSDN技术社区等,与其他从业者交流心得和经验。
持续跟进:AI领域发展迅速,定期阅读最新的研究报告和技术文章,保持对新技术的关注。
通过以上书籍的学习,你将能够建立起坚实的大模型理论基础,并具备一定的实践能力。希望这些推荐能帮助你在大模型领域有所建树!
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。