在面对复杂、罕见的病例时,医生如何做出准确诊断往往是一个巨大的挑战。人工智能,特别是大型语言模型(LLM),正展现出改变这一局面的潜力。《Nature》最新发表的一项重磅研究,就为我们揭示了一个名为 AMIE 的 AI 模型,在辅助医生进行高难度“差分诊断”(Differential Diagnosis, DDx)方面的惊人能力
什么是差分诊断 (DDx)?
简单来说,当病人出现一系列症状时,医生脑中会列出一个包含所有可能疾病的清单,然后通过进一步检查和分析,逐一排除或确认,最终找到最可能的诊断。这个过程就是差分诊断,是临床推理的核心。
AMIE 是什么?
AMIE (Articulate Medical Intelligence Explorer) 是 Google 研究团队开发的一个大型语言模型。与通用聊天机器人不同,AMIE 经过了专门优化,特别擅长进行医学诊断推理。它学习了海量的医学知识,并能像医生一样,基于病例信息进行分析和推理,生成可能的诊断列表。
研究方法:研究团队设计了一个非常严谨的实验:
-
选取了 302 个来自《新 England Journal of Medicine》(NEJM) 临床病理讨论 (CPCs) 的真实病例。这些病例以其极高的复杂性和诊断难度而闻名,是考验医生诊断能力的“终极试炼”。
- 考生:
20 位具有执业资格的内科医生。
- 考官:
19 位与病例领域相关的专科医生(负责评估诊断质量)。
- 随机对照:
-
-
内科医生先在没有任何辅助的情况下,对病例进行差分诊断。
-
然后,他们被随机分配到两种辅助条件之一:
-
-
-
- 条件一 (Search 组):
使用互联网搜索引擎和标准医学数据库(如 PubMed, UpToDate)来完善诊断。
- 条件二 (AMIE 组):
通过一个交互界面与 AMIE 对话,提出问题,获得建议,并结合其他工具(可选)来完善诊断。
- 条件一 (Search 组):
-
- “阅卷”方式 (盲评):
最关键的是,专科医生在评估最终生成的诊断列表时,并不知道这份列表是来自无辅助的医生、Search 辅助的医生、AMIE 辅助的医生,还是 AMIE 模型独立生成的。这保证了评估的客观公正。
- 评估指标:
不仅看最终诊断是否在列表里 (Top-N 准确率),还评估了列表的质量 (Quality)、适切性 (Appropriateness) 和全面性 (Comprehensiveness)。
研究结果:
- AMIE 独立表现惊艳:
在这些高难度病例上,AMIE 独立生成的差分诊断列表,其准确性(包含最终正确诊断的能力)显著优于未经任何辅助的内科医生。
- AMIE 强力辅助医生:
-
-
与医生无辅助相比,得到 AMIE 帮助的医生,其诊断列表的准确性、质量、适切性和全面性均有显著提升。
-
与医生使用传统搜索工具相比,得到 AMIE 帮助的医生生成的诊断列表仍然更胜一筹。这意味着 AMIE 提供的辅助效果超越了现有标准工具。
-
- 提升诊断全面性:
AMIE 特别擅长拓宽医生的思路,帮助他们想到一些可能忽略的诊断方向,生成更全面的列表。
DDx列表的质量评价:
DDx列表中的前n名准确性:
内科医生、使用AMIE和search辅助后的内科医生分别生成的DDx列表的准确性:
AMIE、内科医生、使用AMIE和search辅助的内科医生分别生成的DDx列表的前1名和前10名的准确性(按专科):
桑基图使用AMIE和search辅助后的内科医生在最终正确诊断的变化:
研究意义:
这项研究表明,像 AMIE 这样专门优化的 LLM:
- 有望成为医生的得力助手:
特别是在处理复杂、罕见或跨学科病例时,可以提供有价值的参考,减少漏诊、误诊的可能性。
- 可能改变医学教育:
可作为强大的学习工具,帮助医学生和年轻医生训练诊断思维。
- 潜力巨大但也需谨慎:
AI 展示了惊人的潜力,但将其应用于实际临床还需要大量的验证工作,确保其安全、可靠、公平。
局限性与未来方向:
- 特定病例:
研究使用的是 NEJM 的高难度病例,结果能否推广到日常的普通病例,还需要更多研究。
- 文本为主:
目前 AMIE 主要处理文本信息,未来整合图像、化验单等多模态信息将是重要方向。
- 真实世界验证:
需要在真实的临床工作流中进行测试和验证,观察其对诊疗效率和患者结局的实际影响。
- 模型可用性:
目前 AMIE 仍是研究性系统,并未公开可用。其未来的应用将需要与监管机构和医疗界紧密合作。
结语
AI 辅助诊断的时代正加速到来。《Nature》的这项研究无疑是一个重要的里程碑,它清晰地展示了大型语言模型在医学领域,尤其是在核心的诊断推理任务上的巨大潜力。虽然距离广泛临床应用还有路要走,但这无疑为我们描绘了一个更智能、更精准的医疗未来。
你认为 AI 将如何改变你看病的方式?欢迎在评论区留言讨论!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓