概述
在众多的中间件,比如LLaMAFactory、ms-swift、MindSpeed-LLM中,都会有一个很容易忽略的过程,那就是数据的处理;训练数据集按一个的格式组装好数据后,中间件会处理数据,将其转换成规定的格式,然后再做token化,最后再做embedding。
数据处理
训练数据格式
训练格式一般是alpaca、sharegpt两种格式;如下所示:
####
#### alpaca格式
####
{
"instruction":"",
"input":"",
"output:""
}
####
#### sharegpt格式
####
[{
"conversation":[
{
"system": "You are an AI asssistant."
"input": "Hello?",
"output": "Hello! How can I help you?"
},
{
"input": "What's the date today?",
"output": "Today is Monday, August 14, 2023."
},
{
"input": "Thank you!",
"output": "You are welcome."
}
]
}]
但最终在中间件中会处理成如下格式:
{
"messages": [
{
"role": "system",
"content": "你是一个能干的助手."
},
{
"role": "user",
"content": "谁赢得了2020年的世界职业棒球大赛?"
},
{
"role": "assistant",
"content": "洛杉矶道奇队在2020年赢得了世界职业棒球大赛冠军."
},
{
"role": "user",
"content": "它在哪里举办的?"
},
{
"role": "assistant",
"content": "洛杉矶道奇队在2020年赢得了世界职业棒球大赛冠军."
}
]
}
当然在不同的中间件中,可能会有些微的差别;但json内部的节点一般都是一致的;一般都是role
、content
节点。
chat_template模板
为什么对话模板内的JSON节点基本都是一致的呢?又是由什么决定的呢?
以**DeepSeek-R1-Distill-Qwen-32B**模型为例,在其模型文件中,有一个tokenizer_config.json文件,最后有一个chat_template节点,表示该模型的聊天对话模板,基于Jinja模板引擎编写。如下所示:
{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": {
"__type": "AddedToken",
"content": "<|begin▁of▁sentence|>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"clean_up_tokenization_spaces": false,
"eos_token": {
"__type": "AddedToken",
"content": "<|end▁of▁sentence|>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"legacy": true,
"model_max_length": 16384,
"pad_token": {
"__type": "AddedToken",
"content": "<|end▁of▁sentence|>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": false
},
"sp_model_kwargs": {},
"unk_token": null,
"tokenizer_class": "LlamaTokenizerFast",
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}"
}
而在这个jinja模板引擎内,就会解析训练数据的结构,提取信息,从而组装对话模板,这个对话模板就是LLM要求的格式内容。
以MindSpeed-LLM为例,最终经过数据处理后,再引用chat_template模板解析,最终会输出这样的数据:
最终格式
经过之前的数据处理后,最后数据要喂给LLM作训练的;而这里的数据,要做两步处理:tokenizer--->embedding。即,首先是将文本数据token化,然后向量化。
以MindSpeed-LLM为例,代码处理如下:
然后就会组装一个ids的结构,如下
在这一步,暂时没有涉及到embedding向量化处理,暂时不提及;但是讲一下为什么要embedding。
token 化后得到的input_ids
是一系列整数,每个整数代表词汇表中的一个特定 token。这些整数本身只是简单的标识符,不包含语义信息,模型无法直接从这些整数中学习到语言的特征和模式。例如,“苹果” 对应的input_id
是一个数字,但这个数字本身并不能体现 “苹果” 是一种水果、有红色或绿色等属性。
向量化处理(Embedding)的作用
-
引入语义信息:Embedding 层会将每个
input_id
映射到一个固定长度的向量空间中,这样每个 token 就可以用一个向量来表示。这些向量能够捕捉到 token 之间的语义关系,比如语义相近的词在向量空间中距离较近。例如,“苹果” 和 “香蕉” 的向量在空间中可能会比较接近,因为它们都属于水果类别。 -
适合模型处理:神经网络模型更擅长处理向量数据。通过将
input_ids
转换为向量,模型可以对这些向量进行各种数学运算,如矩阵乘法、卷积等,从而学习到语言的特征和模式。 -
降低维度:词汇表通常非常大,直接使用
input_ids
会导致模型的输入维度非常高。而 Embedding 可以将高维的离散输入转换为低维的连续向量,减少模型的计算量和参数数量。
小结
总的来说,大模型的训练数据是以chat_template模板引擎文件中的格式要求为主的,中间件会将训练数据预处理转换为对应的格式;其次就是经过token化后,转成固定的ids与mask标记,最终过一遍embedding。
这个数据处理流程是比较关键的,属于原理部分,但大多数人都会忽略,不过对于AI训练、数据准备来说,还是很有必要了解的。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】