在不久前举办的 AICon 全球人工智能开发与应用大会上智源研究院大模型行业应用总监周华为我们带来了精彩专题演讲“智源技术分享:大模型行业应用新模式和关键实现路径”,演讲分析当前行业企业在大模型落地过程中技术团队普遍会遇到的问题和障碍,结合智源研究院在大模型产业落地过程中的实践经验,总结帮助企业跨越大模型应用技术障碍的以大模型为核心新型技术路径,涵盖数据、模型评测、模型训练和应用集成,并针对行业落地过程中突出的数据问题给出数据生产流程的构建技术建议,最后向各行业的大模型应用开发者分享智源研究院在大模型行业应用方向上的最新开源技术成果。
内容亮点:
-
理解大模型行业应用落地问题的深层次原因;
-
理解大模型行业应用的独特技术差异,获得以大模型为核心的应用构建的技术方法;
-
高效构建可持续行业大模型数据生产流程的技术方案;
-
智源研究院最新的大模型行业应用相关开源技术成果详细讲解。
以下是演讲实录(经 InfoQ 进行不改变原意的编辑整理)。
去年,我们经历了一场被称为“百模大战”的激烈竞争,这场竞争主要在通用领域展开。然而,从今年开始,我们注意到众多企业,包括央企和国企,以及中小企业,都开始着手将这些模型应用于具体的行业实践中。
尽管行业落地的挑战显而易见,但我们可以认为,我们的大模型应用的发展已经进入了一个新的阶段,也就是所谓的行业落地“深水区”。下面,我将与大家分享一个我在过去两年中一直在研究的话题,即《大模型在行业应用中的新模式和关键实现路径》。
AI 大模型浪潮推动企业 IT 系统架构变革
回顾历史,早期计算机系统进入企业时,主要是以流程为中心,强调企业流程的优化和支持复杂流程的实现。进入 21 世纪,随着互联网尤其是移动互联网的兴起,架构逐渐转向以服务为核心。
对于资深从业者来说,可能还记得 AWS 早期提出的企业部门间以 API 的服务形式对外的理念,这一理念经过多年实践已经得到了很好的执行,特别是在微服务架构的落地上。
到了 2010 年左右,云计算和大数据技术成为主流,企业开始以数据为核心,大量大数据平台应运而生,主要处理结构化数据,同时也涉及非结构化和半结构化数据。数据被视为企业的重要资产。
ChatGPT 的出现标志着一个新的转变,我们正在进入一个以大模型为核心的时代。但这并不意味着数据将不再重要,实际上,数据和大模型是相互结合并行发展的。
未来,大模型将进一步整合数据和服务,利用其强大的泛化能力,支持系统执行许多以往需要人工完成的任务。智能系统不再是单纯的工具,而是成为一种能够主动学习、自适应和协调的智能体,支持企业 IT 系统的发展。因此,以大模型为核心的系统将成为企业 IT 系统发展的重要方向。
以 AI 和大模型为核心的应用系统正在经历一场演进。在没有大模型的时代,用户使用 IT 系统的过程是手动的:用户需要设定任务目标,规划流程,分析信息,执行路径,最终获得所需结果。在这个过程中,用户需要与系统交互,了解系统功能,并选择相应的功能来提出请求,获得请求结果,然后决定选择下一个应用功能。开发人员的主要任务是从功能上实现整个 IT 系统服务,这是当前传统的模式。
随着大模型的引入,我们看到了一种新模式的出现。在许多企业应用中,多智能体助手成为核心,它们背后依托的是行业大模型。用户只需设定任务目标,智能体助手将负责执行用户想要的操作,并最终提供任务完成的结果。智能体助手将接管任务分解、规划和执行的工作。
在 ChatGPT 刚出现时,我们可能直接与模型对接,进行问答形式的交互,大模型还无法与 IT 系统进行整合。要让大模型真正融入 IT 系统,必须与现有的 IT 系统对接。智能体通过函数调用或工具调用与 IT 系统对接,这一过程与用户与系统的交互过程非常相似,实际上是让多智能体助手帮助用户发起请求、获取和处理请求。
应用开发者不仅要维护现有的 IT 系统,还需要实现智能体应用。同时,算法工程师这一新角色变得非常重要,他们负责训练驱动行业应用智能体的核心大模型,并提供模型服务。
智能体与传统系统之间的分工是,智能体完成专业的认知任务,而非认知性的,程序化的任务则保留在传统系统中,通过原有接口和工具执行。在这种分工趋势下,许多应用系统都将朝着这个方向发展,智能体和传统系统将共同协作,为用户提供更加智能化的服务。
以 AI 大模型为核心的应用系统关键实现路径
实现以大模型为核心的企业 IT 应用系统的关键路径可以分为以下几个主要模块。首先,我们需要进行需求分析和方案设计,这是实现系统的第一步。接下来,在完成方案设计后,我们将并行进行模型训练、数据工程和智能体应用系统的开发。在整个过程中,数据工程被视为核心,因此被放在中间位置。
具体来看,需求分析和方案设计阶段与我们传统的 IT 系统设计相似,但存在一些差异。首先,我们需要进行可行性分析,这是任何项目启动前的标准步骤。然后,我们要梳理模型的业务需求,这是确保模型能够满足实际业务需求的关键步骤。
接着是模型能力的定义,这一点与传统 IT 系统不同,需要明确系统的应用场景,并梳理出哪些任务可以由模型执行,哪些仍需依赖现有的 IT 系统。最独特的地方在于评测体系的建立。
在传统的 IT 系统中,我们通常通过测试用例来进行测试,但现在我们需要构建一套测试集来评估模型或基于模型的智能体,因为模型或基于模型的智能体的输出并不是完全确定的。能够成功完成任务的评估结果可能以百分比形式呈现,一般而言都不是绝对的 100%。最后,我们需要确定总体的应用方案,这是需求分析和方案设计阶段的总结。
在实现以大模型为核心的企业 IT 应用系统中,模型训练、数据工程和智能体应用开发是三个关键环节。首先,我们来看数据工程。企业拥有大量数据,但关键在于如何收集数据、判断哪些数据有用。
这需要根据模型的能力需求来确定数据的方向。数据分为外部数据和内部数据,外部数据主要是行业通用的专业知识,需要有获取渠道;内部数据则是专业的业务数据,需要盘点并进行文档预处理和数据集制作。文本数据和多模态数据的处理也包括在内。
此外,如果应用需要向量数据库,就需要进行数据拆分。如果向量模型的准确率和召回率不高,还需要准备微调数据。对于大型项目,可能还需要制作继续训练的数据集和微调的指定数据,甚至是人力对齐的数据。数据工程强调的是了解数据位置、盘点数据以及获取外部专业数据的渠道。
接下来是模型训练,AI 大模型的应用系统中模型训练常被首先提及,但实际上它并不是一个非常难的环节,因为模型训练的方法在通用领域已有解决方案,我们只需遵循即可。模型训练有两个分支:RAG 方向和 CPT(继续预训练)或 SFT 方向。
RAG 方向的模型训练是指针对 Embedding 模型在专业领域性能下降的问题,需要使用企业专业数据进行 Embedding 模型微调的训练。模型训练的关键在于模型的选型,需要根据业务场景选择最合适的模型,并考虑模型在系统中的能力要求,选取适合评估相关能力的评测指标,并选择评测指标强的模型。
最后,使用准备好的数据进行模型训练,这个过程可能需要多轮迭代,如果评测结果不佳,可能需要回到数据层面解决能力问题。
最后是智能体应用的开发,这与传统模式有所不同。需要根据需求明确智能体应用的功能,设计整体架构,以及执行流程,可能是顺序执行或层级执行。同时,需要提出智能体核心模型的需求,并设计和管理提示词库,建议统一管理提示词并进行集中评测和优化。记忆体的设计也非常关键。
在完成这些准备工作后,将流程串联起来,实现智能体与现有 IT 系统的对接,并进行测试评估。这不仅仅是软件测试,更多的是评估智能体是否达标,如果不达标,可能需要进行迭代优化。
最后要说明的一点是,智能体应用的发展目前刚刚起步,各种框架实现群雄逐鹿,生产环境可用性需要开发团队有很大的耐心去试错填坑,并且智能体应用的工程化实现的思路和传统软件工程化实现思路差异还是比较大的,这也是未来智能体应用开发者们要解决的问题。
在完成模型训练、数据工程和智能体应用开发这三个关键任务之后,我们进入最后的部署阶段。这包括模型的生产部署、检索正向库的构建、智能应用体的生产系统集成,以及系统的上线。
项目完成后,我们可以进行 demo 展示或者实现项目的结算结项,这是整个实现路径的最终步骤。
上述所有这些实现过程与传统的 IT 系统实现有着相似之处。我们需要定义系统的能力,即需求,从模型的能力出发去训练模型。
以一个具体的例子来说,如果我们要在医疗行业应用大模型,我们不仅需要通用的语言能力和安全价值观,还需要将医疗业务能力整合进去。这种业务能力是层级性的,需要逐步分解。
从最顶层开始,逐步细化,直至分解为一个个具体任务。每个任务对应需要的数据类型和评测性能的标准。
总之,我们需要从能力出发选择合适的模型,根据能力需求收集或制作训练数据,并指导模型训练。这个过程要求我们不仅要关注技术实现,还要深入理解业务需求,确保大模型能够真正融入并提升企业的 IT 系统能力。
总结
对于企业 IT 系统的未来,它肯定会朝着以大模型为核心的应用体系架构发展。大模型的能力决定了我们系统的能力上限,因此我们的评测也主要是针对模型的能力来进行。
多智能体系统的开发和应用将拓展大模型的能力,不再局限于简单的问答,而是与 IT 系统联动,极大扩展模型的能力。我们需要以用户助理的视角来理解新的业务和技术特点,而不仅仅是作为开发者解决用户的功能需求。
对于关键路径而言,需求和业务场景是引领整个关键路径的核心。工程、数据工程、模型训练以及多智能体应用开发需要齐头并进,其中业务场景和数据工程可能在企业应用智能化改造的前期过程中是最为重要的。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】