是的,没错,Qwen团队又开源了,这次是偏好模型-WorldPM。
偏好模型,就是也可以理解为奖励模型,在强化学习中用来打分的那个模型!
HF:https://huggingface.co/collections/Qwen/worldpm-6826f363e9c62f97a0b437e6
Paper:https://arxiv.org/abs/2505.10527
WorldPM,是在1500万条训练样本上进行偏好训练,模型规模从1.5B到72B,同时发现偏好模型遵循与语言模型类似的缩放规律。
模型的训练数据来自多个公共论坛,包括StackExchange(一个专业问答平台)、Reddit(一个社交新闻和社区讨论平台)和 Quora(一个知识分享和问答社区)。数据一般是一个问题+多个帖子的形式,用户对这些帖子进行点赞或点踩。
偏好数据就是从回答列表中的随机选择两个具有不同净点赞数(点赞-点踩) 回答,数据样例如下。
同时为了全面评估 WorldPM,包括不同的维度的评测数据集,
-
PPE:包括主观和客观部分的评估。主观部分的数据来自 Chatbot Arena 的真实用户标注。客观部分从 MMLU-Pro、IFEval、GPQA、MATH和 MBPP-Plus数据集中收集问题,并从顶尖模型中收集回答。通过与真实答案验证回答的正确性,形成偏好对。
-
RMB:主要依赖 GPT4 作为主要标注器,并辅以人工验证过程。涵盖多种场景,主要分为两个方面:有用性和无害性。
-
RM-Bench:包括聊天、代码、数学和安全四个领域的评估。聊天领域的评估通过在回答中插入事实错误来评估模型识别错误的能力。代码和数学的提示分别来自 HumanEvalPack和 MATH数据集,并与真实答案进行验证。安全部分包括伪有害和真正有害的问题,以评估模型的安全评估能力。
-
Reward Bench:包括聊天、聊天困难、推理和安全四个领域的评估。聊天困难部分主要来自 LLMBar,通过构建微妙的错误回答来挑战奖励模型,以误导评估。
-
Offset Bias:数据集构建高质量。
-
HelpSteer2:数据集由人工标注者精心标注和筛选。
WorldPM在训练过程中,尝试了不同超参,发现相同步数时Batch Size越大越好,但考虑到整体数据量,最终使用10K,同时学习率采样3e-6。训练基模采样Qwen2.5系列模型。
通过结果分析,WorldPM发现,
-
在对抗性上,测试损失呈现幂律下降,说明随着训练数据和模型尺寸的增加,模型在表面完善但不相关或不完整的回复方面的能力得到了显著提升。
-
在客观评估上,存在明显的“涌现”现象,更大的模型在更多基准测试中展现出测试损失的幂律下降。WorldPM需要借助更大规模的模型来捕捉与客观知识相关的偏好。
-
在主观评估上,没有明显的scaling law,主要是主观评估具有多维特性,评估结果是多个维度的平均值。会导致某些维度呈现正向扩展,而其他维度呈现负向扩展,最终整体表现缺乏扩展性。
同时,WorldPM是一个很好的基座模型,经过3个不同的开源偏好数据集二次微调,都取得了不同程度的提高,如下表所示。
最后,在WorldPM使用时,需要注意,需要保留system token,但系统提示词要设为空,并且奖励计算采用<|endoftext|> token的隐藏状态。
from transformers import AutoModel, AutoTokenizer, AutoConfig
# 初始化模型
model_name = 'Qwen/WorldPM-72B'
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name,trust_remote_code=True )
model = AutoModel.from_pretrained(
model_name,
config = config,
device_map = "auto",
trust_remote_code=True,
).eval()
# 获取偏好值
def get_score(model, tokenizer, conversation):
con_str = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False)
input_ids = tokenizer.encode(con_str, return_tensors="pt", add_special_tokens=False)
outputs = model(input_ids=input_ids.to(model.device))
score = outputs[0].cpu().item()
return score
# 数据构造
messages = [
[
{'role': 'system', 'content': ""},
{'role': 'user', 'content': "Tips for better sleep?"},
{'role': 'assistant', 'content': "Three key tips for better sleep:\n1. Set a consistent bedtime and wake-up schedule\n2. Avoid screens 1 hour before bed\n3. Keep your bedroom cool and dark\n\nStart with these habits and you should notice improvement within a week."}
],
[
{'role': 'system', 'content': ""},
{'role': 'user', 'content': "Tips for better sleep?"},
{'role': 'assistant', 'content': "just try sleeping earlier or take some pills if u cant sleep lol. maybe watch tv until u get tired idk"}
]
]
# 计算结果
score = [get_score(model, tokenizer=tokenizer, conversation=message) for message in messages]
print(score)
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】