【大模型入门必看】手机也能跑Qwen3?手把手教你如何部署!

全球开源模型冠军 Qwen3、端到端全模态模型 Qwen2.5-Omni,现已成功在手机上跑通!

在 MNN 的支持下,Qwen3 系列模型已适配 Android、iOS 及桌面端,实现低延迟、本地化、高安全的 AI 体验。同时,Qwen2.5-Omni 的语音理解、图像分析等多模态能力也在移动端得到完整释放。

 小Tips 

MNN:一个高效、轻量的深度学习框架,专注于在端侧设备(手机、嵌入式设备)上实现高性能的模型推理与训练,让大模型也能在各类设备中都能高效运行。

MNN-LLM:基于 MNN 引擎打造的大型语言模型运行时解决方案,能让大语言模型(LLM)更好落地于手机、PC 和物联网等终端设备。

Qwen3:全球领先的开源大语言模型,具备强大的语言理解、逻辑推理、代码生成等能力,是一款“全能型 AI 大脑”。现已开源 0.6B 至 235B 共 8 个尺寸版本,无论是企业级服务器还是手机、手表等小型设备,都能灵活部署、高效运行。

Qwen2.5-Omni:端到端全模态模型,体积小、易部署,支持语音、图像、文本等多种输入方式,真正实现“听懂你说的、看懂你给的、写出你需要的。”

MNN Chat APP 支持自定义 Sampler 设置、System Prompt 和 Max New Tokens,你可以根据需要调节模型输出的风格、长度和人设,让 Qwen3 的回答更贴合你的使用场景。

图片

⬆️ 官方推荐 Sample 参数

图片

是不是已经迫不及待想要动手尝试了?小编为你整理了一份适用于 Android、iOS 和桌面端的完整部署流程,跟着做就能轻松上手。

Android 平台部署

Android 用户可以直接从 GitHub 上下载,也可自行编译定制功能。

git clone https://github.com/alibaba/MNN.gitcd project/androidmkdir build_64../build_64.sh "-DMNN_LOW_MEMORY=true  -DMNN_BUILD_LLM=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_ARM82=true -DMNN_USE_LOGCAT=true -DMNN_OPENCL=true -DLLM_SUPPORT_VISION=true -DMNN_BUILD_OPENCV=true -DMNN_IMGCODECS=true -DLLM_SUPPORT_AUDIO=true -DMNN_BUILD_AUDIO=true -DMNN_BUILD_DIFFUSION=ON -DMNN_SEP_BUILD=ON"find . -name "*.so" -exec cp {} ../apps/MnnLlmApp/app/src/main/jniLibs/arm64-v8a/  cd ../apps/MnnLlmApp/./gradlew installDebug

iOS 平台部署

现阶段 iOS 用户需要手动编译,部署过程分为 5 步

1、下载仓库代码

git clone https://github.com/alibaba/MNN.git

2、编译 MNN.framework

cd MNN/sh package_scripts/ios/buildiOS.sh "-DMNN_ARM82=true -DMNN_LOW_MEMORY=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_BUILD_LLM=true -DMNN_METAL=ON-DMNN_BUILD_DIFFUSION=ON-DMNN_BUILD_OPENCV=ON-DMNN_IMGCODECS=ON-DMNN_OPENCL=OFF-DMNN_SEP_BUILD=OFF

3、拷贝 framework 到 iOS 项目中​​​​​​​

mv MNN-iOS-CPU-GPU/Static/MNN.framework /apps/iOS/MNNLLMChat/MNN.framework

4、配置依赖库,这里需要确保 Link Binary With Libraried 中包含 MNN.framework 和其他三个 Framework。

图片

如果没有包含,可以手动添加:

图片

图片

5、修改 iOS 签名并编译项目​​​​​​​

cd /apps/iOS/MNNLLMChatopen MNNLLMiOS.xcodeproj

在 Xcode 的 Signing & Capabilities 页面中设置 Team 和 Bundle Identifier 后,点击运行按钮即可启动应用,加载并运行 Qwen3 或 Qwen2.5-Omni 模型。

图片

后续我们也会上线 TestFlight 安装包,让你一键安装、轻松使用!

桌面端部署(Windows、Mac、Linux)

如果你想在电脑上尝试这些模型,也非常简单,只需要从魔搭平台下载模型,再配合 MNN 源码编译即可。

1、模型下载​​​​​​​

#命令行工具下载modelscope download --model 'MNN/Qwen2.5-Omni-3B-MNN' --local_dir 'path/to/dir'

2、环境安装

  • x86架构额外加 MNN_AVX512 的宏:

  • Mac 推荐增加 MNN_METAL的宏

git clone https://github.com/alibaba/MNN.git
# 编译cd MNNmkdir build && cd buildcmake .. -DLLM_SUPPORT_VISION=ON -DMNN_BUILD_OPENCV=ON -DMNN_IMGCODECS=ON -DLLM_SUPPORT_AUDIO=ON -DMNN_BUILD_AUDIO=ON -DMNN_LOW_MEMORY=true -DMNN_CPU_WEIGHT_DEQUANT_GEMM=true -DMNN_BUILD_LLM=true -DMNN_SUPPORT_TRANSFORMER_FUSE=truemake -j

编译完成后,可以看到 mnncli 产物,通过 mnncli 命令可以执行下载、benchmark 测试、启动 rest 服务等功能。

➡️ Qwen3模型推理​​​​​​​

# 运行./mnncli serve Qwen3-4B-MNN

完成上述命令执行后,系统将在本地启动一个 REST 服务端,接下来你就可以在 Chatbox 等客户端配置使用 MNN 服务啦~

图片

➡️ Qwen2.5-Omni 模型推理

./llm_demo /path/to/Qwen2.5-Omni-3B-MNN/config.json

你可以通过上述命令启动推理流程,Qwen2.5-Omni 支持在提示词中嵌入图像和音频资源,实现图文+语音的联合理解。例如: ​​​​​​​

<img>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg</img>介绍一下这张图片<audio>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav</audio>

图片

GitHub 地址:https://github.com/alibaba/MNN/

魔搭地址:https://modelscope.cn/organization/MNN

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值