LLM系列:KVCache及优化方法

Transformer encode-base模型,推理和训练过程高度统一(差异仅仅是否存在反向),而decoder-base模型(如GPT、LLama2),推理与训练差异性比较大:

  • 自回归推理
  • 全量prompt+增量token
  • KV Cache

KV Cache

如下以GPT2结构第i层推理过程为例,分析KV Cahche计算过程,其中WQi,WKi,WVi,WOi,Wupi,WdowniW_Qi,W_Ki,W_Vi,W_Oi,W_{up}i,W_{down}iWQi​,WKi​,WVi​,WOi​,Wupi​,Wdowni​表示第i层decoder权重矩阵。

全量prompt阶段

第i层输入xix^ixi([b,s,h]),self-attention块 xKi,xVi,xQix_Ki,x_Vi,x_Q^ixKi​,xVi​,xQi​([b,s,h])

KV Cahche计算:

xKi=xi⋅WKi([b,s,h])x_K^i = x^i \cdot W_K^i([b,s,h])xKi​=xi⋅WKi​([b,s,h]) xVi=xi⋅WVi([b,s,h])x_V^i = x^i \cdot W_V^i([b,s,h])xVi​=xi⋅WVi​([b,s,h])

第i层attention、mlp计算:

xQi=xi⋅WQi([b,s,h])x_Q^i = x^i \cdot W_Q^i([b,s,h])xQi​=xi⋅WQi​([b,s,h])

xouti=softmax(xQixKiTh)⋅xVi⋅WOi+xi([b,s,h])x_{out}i=softmax(\frac{x_Qi{x_Ki}T}{\sqrt{h}})\cdot x_V^i \cdot W_O^i + x^i ([b,s,h])xouti​=softmax(h​xQi​xKi​T​)⋅xVi​⋅WOi​+xi([b,s,h])

xi+1=fgelu(xouti⋅Wupi)⋅Wdowni+xouti([b,s,h])x{i+1}=f_{gelu}(x_{out}i \cdot W_{up}^i) \cdot W_{down}^i + x_{out}^i ([b,s,h])xi+1=fgelu​(xouti​⋅Wupi​)⋅Wdowni​+xouti​([b,s,h])

增量token阶段

增量推理时,当前生成词在第i层表示ti([b,1,h])t^i ([b,1,h])ti([b,1,h]),推理时执行:更新KV Cache和计算第i层输出。

更新KV Cahce:

xKi←Concat(xKi,ti⋅WKi)([b,s+1,h])x_K^i \leftarrow Concat(x_K^i, t^i \cdot W_K^i) ([b,s+1, h])xKi​←Concat(xKi​,ti⋅WKi​)([b,s+1,h]) xVi←Concat(xVi,ti⋅WVi)([b,s+1,h])x_V^i \leftarrow Concat(x_V^i, t^i \cdot W_V^i) ([b,s+1, h])xVi​←Concat(xVi​,ti⋅WVi​)([b,s+1,h])

第i层计算过程:

tQi=ti⋅WQi([b,1,h])t_Q^i = t^i \cdot W_Q^i ([b,1,h])tQi​=ti⋅WQi​([b,1,h]) touti=softmax(tQixKiTh)⋅xVi⋅WOi+ti([b,1,h])t_{out}^i = softmax(\frac{t_Qi{x_Ki}^T}{\sqrt{h}})\cdot x_V^i \cdot W_O^i + t^i ([b,1,h])touti​=softmax(h​tQi​xKi​T​)⋅xVi​⋅WOi​+ti([b,1,h])

ti+1=fgelu(touti⋅Wupi)⋅Wdowni+touti([b,1,h])t{i+1}=f_{gelu}(t_{out}i \cdot W_{up}^i) \cdot W_{down}^i + t_{out}^i ([b,1,h])ti+1=fgelu​(touti​⋅Wupi​)⋅Wdowni​+touti​([b,1,h])

KV Cache缓存机制如图:

image.png

KV Cache显存分析

KV cache的峰值显存占用大小: b(s+n)∗h∗l∗2∗2=4blh(s+n)b(s+n)∗h∗l∗2∗2=4blh(s+n)b(s+n)∗h∗l∗2∗2=4blh(s+n),输入序列长度s,输出序列长度n,第一个2表示k/v cache,第二个2表示fp16占用2个字节,transformer模型的层数为l,隐藏层维度为h。

以GPT3(175B)为例分析KV Cache与模型参数大小,GPT3模型weight占用350GB(FP16),层数l=96,维度h=12888。

bss+nkv cache(GB)kv cache/weight
4409675.50.22
1640963020.86
64409612083.45

根据上述数据,随着batch增大和长度增大,KV Cahche开销快速增大,甚至超过模型参数本身。

LLM的窗口长度不断增大,KV Cahche开销随之不断增大,优化KV Cahche非常必要。

KV Cache优化方法

总结典型KV Cache优化手段如下。

1 共用KV Cache(MQA和GQA)

MQA(Multi Query Attention)多查询注意力是MHA多头注意力的变体。两者主要区别是MQA中不同头共享一组KV,每个头只保留查询参数Q。KV矩阵只有一份,大幅减少内存。 由于MQA改变注意力机制结构,模型需要从训练开始就支持MQA,或通过对已训练好的模型微调支持MQA,仅需约5%的原始数据量即可达到不过效果。Falcon、SantaCoder、StarCoder 等在内很多模型都采用了MQA机制

# Multi Head Attention
self.Wqkv = nn.Linear(     # Multi-Head Attention 的创建方法
    self.d_model,
    3 * self.d_model,     # Q、K和V 3 个矩阵, 所以是 3 * d_model
    device=device
)
query, key, value = qkv.chunk(3, dim=2)      # 每个 tensor 都是 (1, 512, 768)

# Multi Query Attention
self.Wqkv = nn.Linear(       # Multi-Query Attention 的创建方法
    d_model,
    d_model + 2 * self.head_dim,    # 只创建Q的头向量,所以是 1* d_model, 而K和V不再具备单独的头向量, 所以是 2 * self.head_dim
    device=device,
)
query, key, value = qkv.split(
    [self.d_model, self.head_dim, self.head_dim],    # query -> (1, 512, 768), key   -> (1, 512, 96), value -> (1, 512, 96)
    dim=2
)

GQA (Grouped Query Attention,分组查询注意力),介于MHQ和MQA之间的折中方案。按查询头Q分组,每个组共享一个K和V。表达能力与推理性能兼顾。

MHA、MQA与GQA原理:

image.png

MQA与GQA性能对比:

image.png

2 窗口优化

当推理文本长度T大于训练最大长度L时,需要滑动窗口: (1)固定窗口长度(图b) 代表是[Longformer],实现简单,空间复杂度只有O(TL),但精度下降比较大。 (2)KV重计算(图c)
每次计算都重新计算长度为 的 KV cache,由于重计算的存在,其精度可以保证,但是性能损失比较大

(3)箭型attention窗口,基本原理和(StreamingLLM)[[arxiv.org/pdf/2309.17…]

image.png

3 量化与稀疏

通过量化与稀疏压缩 KV cache的显存消耗。

  • 量化方法 主流推理框架都在逐步支持 KV cache 量化,如
  • 稀疏方法 典型稀疏方式:

image.png

结果显示,KV cache稀疏到只有原来20%时仍然可以保持很高精度。

image.png

4 存储与计算优化

典型方法是[vLLM]的PagedAttention。

FlashDecoding 是在FlashAttention基础上对inference的优化,主要分三步:

(1)长文本下将KV分成更小且方便并行的chunk
(2)对每个chunk的KV,Q和他们进行之前一样的FlashAttention获取这个chunk的结果
(3)对每个chunk的结果进行reduce gif图如下:

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

  • 55
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值