面试官:“你了解量化(Quantization)吗?能解释一下非对称量化和对称量化的区别吗?”
老实说,这个问题真挺有代表性。它既考基础理解,也看你对模型部署有没有实战经验。相信很多同学如果没有实践经验,也回答不出一二,我们一起来看一看。
一、为什么要量化?
深度学习模型一般都是用 FP32(32位浮点数)来存储权重和激活的。
量化是将模型参数和计算过程从高精度(FP32)映射到低精度(如 INT8、FP16、BF16),减少存储与计算开销。

量化可以压缩存储空间,FP32 占 4 字节,INT8 仅占 1 字节,理论上体积可减至 1/4。同时可以加速计算,低精度运算能充分利用硬件的 SIMD / Tensor Core,加快推理。
常见方法包括PTQ(Post-Training Quantization)和QAT(Quantization-Aware Training)

QAT训练过程中模拟量化效果,能够实现较高的精度。PTQ训练后直接量化,无需重新训练,简单但精度下降可能较大。
二、对称量化
对称量化的核心思想很简单:让正负区间对称分布在零点两侧。

比如我们要把 FP32 的权重映射到 INT8:
·FP32 范围可能是 [-1.0, 1.0];
·INT8 范围是 [-127, 127]。
那么我们只需要一个缩放因子 scale:
这里没有偏移量(zero-point),默认 0 对应 0。
对称量化计算简单,对硬件友好(适合 GPU / DSP),常用于权重量化。但是如果数值分布不对称(比如激活值 mostly >0),那么对称映射会浪费一半区间,精度下降。
三、非对称量化
非对称量化在对称量化的基础上,多了一个偏移量(zero-point)。

它允许量化范围不是以 0 为中心,可以更灵活地适应数据分布。
公式如下:
举个例子:
·激活值范围:[-0.5, 1.5]
·那么我们就让 0 对应 INT8 的最小值 -128;
·6 对应 INT8 的最大值 127;
·这样每个区间都能充分利用。
非对称量化对偏移分布的数据(如 ReLU 激活)更友好,精度更高,常用于激活量化,但是计算比对称量化复杂,硬件实现稍微慢一点(多一步偏移计算)。
四、实际部署
在实际部署中,像 TensorRT、TFLite、OpenVINO 这些框架都会支持两种量化方式。如果是自己量化模型,一般的流程是:
1.收集样本数据(Calibration)让模型跑一遍,统计每一层的最大最小值;
2.计算 scale 和 zero-point;
3.替换 FP32 运算为 INT8 运算;
4.微调 / 校准,修正精度损失。
比如在 TensorRT 里,使用非对称量化能在激活层上保留更多细节而在一些嵌入式芯片上,只支持对称量化,因为硬件电路简单、推理更快。
五、追问
如果面试官追问一句:“那为什么很多论文都说量化后精度没怎么掉?”
你可以回答:因为模型有冗余,量化后通过再训练(Quantization-Aware Training, QAT)可以补回损失。本质上,量化是在浮点空间和整数空间之间寻找一个近似映射,使得信息损失最小。”
这道题其实不难,但要回答得漂亮,可以遵循“三步走”:
1.一句话定义量化;
2.解释两种方式 + 举例;
3.总结适用场景 + 优缺点对比。
这样不光显示你理解透彻,还体现了工程思维,面试官听完基本就知道你是真懂的。
六、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

01.大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
02.大模型 AI 学习和面试资料
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)






第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

4193

被折叠的 条评论
为什么被折叠?



