近日,在包头市金蒙汇磁材料有限责任公司成品自动检验车间,三台AI大模型质检机器人正在紧张工作着,随着光电的闪烁,电子屏上不断更新着相关信息,一批批磁钢产品很快完成检测。
技术人员查看大模型质检设备上的检测信息
“大模型质检设备开机即用,可以满足公司产品一般缺陷的检测需求。我们第一次使用大模型,漏检率就达到千分之一至万分之五。”金蒙汇磁3C质检部相关负责人李瑞平说,AI大模型还解决了小模型时代客户导入新规格时搜集缺陷样本难、标注样本工作量大、训练周期长等一系列难题,大大提高了检测设备的易用性。
据了解,大模型是指具有庞大的参数规模和复杂程度的机器学习模型。近年来,随着人工智能技术的飞速发展,大模型以其强大的数字处理能力和深度学习能力,不断与各领域交叉融合,逐步成为产业创新的关键抓手和驱动新质生产力的关键引擎。
智慧赋能,引领未来。包头作为稀土永磁产业聚集地,近年来,以金蒙汇磁为代表的稀土企业已率先在稀土永磁产品领域探索性应用人工智能质检技术。如今,随着AI大模型应用落地,将引领包头稀土产业步入大模型智能检测新时代,实现质检生产力倍增。
据金蒙汇磁董事长孙喜平介绍,过去稀土行业人力成本相对较大,因此他们在2021年便与北京领邦智能装备股份公司合作,在包头落地首个人工智能质检应用技术中心。通过人工智能赋能稀土板块,推动人工智能质检技术规模化应用,助推包头稀土行业质检能力显著提升。
之后,金蒙汇磁还多次与北京领邦组成联合体,成功入围工信部揭榜挂帅,开展“高精度AI视觉在线质检系统”技术攻关,并参与国家专项等多个重大技术攻关项目,在人工智能赋能稀土方面深入实践、深度探索。北京领邦的创新成果已被工业和信息化部列入首批智能检测装备创新产品目录。
今年,政府工作报告提出开展“人工智能+”行动。在北京领邦负责人崔忠伟看来,开展“人工智能+”行动应该把人工智能和大模型与制造业等传统产业结合,通过人工智能大模型重塑各行各业,助力发展新质生产力。
今年3月,在重庆召开的智能检测产业发展大会上,北京领邦正式发布了工业质检大模型。崔忠伟表示,通过技术创新,基于大模型的新一代质检技术不仅大幅提升了质检的效率和准确性,更针对小模型质检中的漏检和标注训练引发的使用难两大问题提供了有效解决方案,引领工业质检技术迈向新高度,进入人工智能检测新时代。
在包头
人工智能大模型与
传统稀土产业“双向奔赴”
会撞出怎样的火花?
在5月17日开展的金蒙汇磁、北京领邦AI大模型技术交流活动中,作为包头稀土行业首个引入AI大模型质检装备的企业,孙喜平表示:“在与北京领邦多年的合作过程中,我们一直在产品检测方面不断推进、不断改善,一个台阶一个台阶地向上攀登。这次大模型进入包头,是稀土产品检测方面一次质的飞跃。”
在孙喜平看来,稀土企业通过引进大模型质检装备可以带来更好的效益。“我们过去做3C产品检测需要二三百人,现在大约需要五六十人,全面引入大模型质检装备后,我们可能只要用二三十人就可以了,有效降低了人力成本。”
不仅如此,通过联合攻关,金蒙汇磁的良品率也由70%提高到90%,并以更强的竞争力在激烈的市场中站稳了脚跟。
参与大模型使用测试的李瑞平说,过去使用小模型想要优化模型需要5天时间,现在仅需要20分钟,“AI大模型不仅提高了检测效率,还减少了客户在产品检测过程中的资源投入和时间成本,对于推动稀土产业智能化转型发展具有重要意义。”
当天,不少包头稀土企业也慕名而来,在金蒙汇磁成品自动检验车间共同感受AI大模型的“不凡之处”。
包头瑞禹健磁业有限公司从事管理工作的耿磊说:“近年来,稀土行业普遍存在招工难现象,而AI大模型质检装备有效破解了人力资源管理方面的这一难题,同时实现了对产品质量的精准高效质检,这也将成为未来稀土行业发展的一大趋势。”
向“新”聚能发力,向“质”攀高跃升。新质生产力和传统生产力相对应,主要是产业领域的转型升级,而智能检测是制造业转型升级的关键。稀土高新区科技局相关人士表示,智能制造与稀土磁材行业的结合,将加速赋能稀土产业发展,推动包头稀土产业迈向高端化、智能化,全面助力包头“两个稀土基地”建设。同时,也将进一步推进落实京蒙协作,加速产业链与创新链的双向融合,引领稀土行业全方位竞逐新质生产力。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓