一文教你编写有效提示词,了解常用提示词工具—Prompt Engineering for Gen AI

这篇文章主要介绍Prompt Engineering的基础概念定义提示及其要素,学习编写有效提示的最佳实践,并评估常用的提示工程工具,如Prompt Lab、Spellbook和Dust。

接下来探讨各种提示工程方法,如Interview Pattern、Chain-of-Thought和Tree-of-Thought,并学习如何巧妙地使用零样本(Zero-shot)和少样本(Few-shot)技术来产生精确和相关的响应。

1. What is prompt

(Prompt)提示是指提供给模型的任何输入或指令,用于生成所需的输出。视频强调了编写有效提示的重要性,以引导AI生成相关且准确的结果。结构良好的提示的关键要素包括指令、上下文、输入数据和输出指标。这些元素帮助模型理解任务,并生成符合用户意图的响应。

这里是一个好的例子:

2. Prompt engineering

提示工程是一门结合了批判性分析、创造力和技术能力的艺术,其核心在于不仅仅提出正确的问题,还要在合适的上下文中提供详细信息,并明确期望的结果,以引导生成式AI模型产生最合适的回应。

举个例子:假设一位船长正在大西洋航行,他需要获取特定位置和时间的精确天气预报。如果仅使用简单的提示,如“大西洋的天气预报”,可能无法获得理想的结果。因此,船长需要精心设计提示,加入具体的纬度和经度信息,以及预报的时间范围。比如,可以设计提示为:“为计划在大西洋航行的船长提供2023年8月28日至9月1日期间,20至30度北纬和40至20度西经区域的天气预报。”此外,还可以进一步要求模型提供关于风向、浪高、降水概率、云量以及可能影响航行的潜在风暴的详细信息。

Prompt Eng的步骤,定义目标、创建初始提示、测试和分析响应,以及不断迭代优化提示。

通过这个过程,提示工程帮助我们更好地理解模型的优缺点,优化模型的性能,并增强模型的安全性,避免由于不良提示导致的有害内容生成。最终,提示工程的重要性在于它能有效利用生成式AI模型的全部能力,生成最优的响应。

3. Prompt Engineering Tools

以下是一些常用的提示工程工具及其特点:

  1. Prompt Lab
  • 特点:用户可以基于不同的基础模型实验和构建提示。提供不同用例的示例提示,如摘要、分类、生成和提取。用户可以通过添加指令和示例来训练模型,以创建特定需求的提示。
  1. Spellbook
  • 特点:由Scale AI开发的集成开发环境(IDE)。支持构建基于语言模型(LLM)的应用,涵盖文本生成、提取、分类、问答、自动完成和摘要。包括提示编辑器,用户可以编辑和测试提示,并使用提示模板和预构建的提示示例。
  1. Dust
  • 特点:提供Web用户界面,用于编写和链接提示。支持管理不同版本的链式提示,并提供一套标准模块用于处理LLM的输出。还支持API集成,可以与其他模型和服务整合。
  1. PromptPerfect
  • 特点:用于优化不同LLM或文本到图像模型的提示,支持GPT、Claude、StableLM、Llama等文本模型,以及DALL-E和Stable Diffusion等图像模型。提供自动完成功能和逐步优化提示的模式,允许用户不断编辑和优化提示,直到满意为止。
  1. GitHub
  • 特点:提供了大量关于提示工程和LLM的资源库,包括指南、示例和工具,有助于提升提示工程技能。
  1. OpenAI Playground
  • 特点:一个基于Web的工具,帮助用户实验和测试OpenAI各种模型(如GPT)的提示。
  1. Playground AI
  • 特点:用于实验文本提示并通过Stable Diffusion模型生成图像的平台。
  1. LangChain
  • 特点:一个Python库,提供构建和链接提示的功能。
  1. PromptBase
  • 特点:提示的交易市场,支持购买和出售适用于各种生成式AI工具和模型的提示,如Midjourney、ChatGPT、DALL-E、Stable Diffusion和Llama。用户可以根据需求购买特定模型或工具的提示,也可以上传并出售自己设计的提示。

这些工具和平台提供了丰富的功能,包括提示建议、上下文理解、迭代优化、偏见缓解、领域特定的帮助以及预定义提示库,帮助用户优化生成式AI模型的提示效果。

4. Text to text prompt

4.1. Interview Patten approach will help you design the prompts better:

Example:

4.2. Chain of thought approach

Chain-of-thought 方法是一种基于提示的学习方法,它通过构建一系列提示或问题,引导模型生成预期的响应。这种方法能够展示生成式AI模型的认知能力,并更好地解释其推理过程。该方法通过将复杂任务分解为更小、更容易处理的任务,逐步引导模型朝着预期结果前进。具体来说,在直接向模型提出问题之前,先向其提供相关问题及其对应的解决方案。这种提示链帮助模型思考问题,并采用相同的策略来正确回答更多类似的问题。

4.3. Tree of Thought Approach

树状思维(Tree-of-Thought)方法是一种创新的提示工程技术,通过类似决策树的结构来生成和评估多种可能性和思路。与传统的线性方法不同,这种技术允许模型同时评估和追踪多条思路。每个思路或想法都会分支,形成互相关联的树状结构。模型通过评估每条可能的路径,给予它们相应的数值,并淘汰不太有前途的思路,最终确定最优选择。

示例:假设你希望模型为一个电子商务企业设计吸引和留住技能娴熟的远程员工的招聘和保留策略。你可以给模型以下提示:假设有三位不同的专家在回答这个问题,每位专家将一步步写下他们的思路,然后与其他专家分享。如果某位专家在任何时候意识到自己错了,他们会退出。这种提示将引导生成式AI模型考虑逐步推进的过程,逻辑性地思考,并探索可能或不可能的分支,从而最大化模型的使用和功能,生成更有价值的结果。

总结:树状思维方法建立在链式思维方法之上,通过层次化的提示结构引导模型的推理和生成输出。它特别有用于需要明确指令或约束时,能够让模型同时探索各种可能性和想法,如同决策树一样分支展开。

5. Image Prompting techniques

5.1 Quality boosters:

examples:

5.2 Repetition:

通过在提示中反复使用相同的词或短语,强调特定的视觉元素,使模型能够专注于你想要突出的概念。这种方法通过生成具有微妙差异的多个图像,增加了输出的多样性,尤其在处理抽象或模糊提示时非常有用。

Example:

5.3 Weighted Terms:

加权术语:通过给特定词语或短语赋予正或负的权重,来强调或弱化某种情感。例如,使用“温暖”这种词语的正权重,可以让模型更加关注这个概念,从而生成更具情感冲击力和说服力的图像。

example:

5.4 Fix deformed generation:

修复变形生成:用于修改图像中的任何变形或异常,特别是涉及人类身体部分的失真、像素化或其他图像质量问题。通过使用负面提示,可以减少这些问题,从而提升图像的视觉吸引力和清晰度。

example:


如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值