大型语言模型 (LLM) 极大地提升了自然语言处理 (NLP) 的上限,为理解和生成人类语言提供了精确而有效的方法。这些模型现在已成为众多行业中各种应用程序不可或缺的一部分,包括聊天机器人、语言翻译、文本摘要和情感分析。然而,由于 LLM 的复杂性及其背后的复杂算法,掌握 LLM 可能具有挑战性,因此今天介绍十本LLM和NLP书籍。
1. GPT-3:使用大型语言模型构建创新的 NLP 产品——O’Reilly
本书深入探讨了 GPT-3 的功能,GPT-3 是当今最先进的 LLM 之一。它提供了使用 GPT-3 构建创新 NLP 产品的见解,涵盖了模型微调、检索增强生成和从人类反馈中进行强化学习等主题。本书是希望在其应用程序中利用 GPT-3 功能的开发人员和企业的实用指南。
2. 大型语言模型快速入门指南 - 使用 ChatGPT 和其他 LLM 的策略和最佳实践 — O’Reilly
本指南提供了使用大型语言模型的快速入门指南,重点介绍 ChatGPT 和其他 LLM。它提供了在项目中实施 LLM 的策略和最佳实践,涵盖模型选择、微调和部署等主题。对于希望快速将 LLM 集成到其应用程序中的开发人员和企业来说,这本书是一份绝佳资源。
这《12本LLM和NLP书籍》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
PDF书籍: 完整版本链接获取
👉[CSDN大礼包🎁:《
12本LLM和NLP书籍
》免费分享(安全链接,放心点击)]👈
3. 使用 Transformer 进行自然语言处理 — O’Reilly
本书由 Lewis Tunstall、Leandro von Werra 和 Thomas Wolf 撰写,深入介绍了 transformers,即在 NLP 中实现最先进成果的主要架构。自 2017 年推出以来,transformers 彻底改变了该领域,与以前的模型相比有了显著的改进。这本书是了解 transformers 的底层机制以及如何将它们应用于各种 NLP 任务的宝贵资源。它涵盖了使用基于 Python 的深度学习库 Hugging Face Transformers 训练和扩展这些大型模型的实际方面,并提供了对 transformers 的实际应用的见解,例如撰写真实的新闻报道和创建聊天机器人。
4. 用于自然语言处理的 Transformers——Packt
本书深入探讨了 Transformer 的世界,重点介绍了它们在 NLP 中的应用。它涵盖了 Transformer 的核心概念,包括自注意力机制,并探讨了如何使用这些模型来增强语言建模能力。对于那些希望了解 Transformer 的技术方面及其在 NLP 中的作用的人来说,这本书是一本绝佳的资源。它提供了 Transformer 架构的全面指南,从原始 Transformer 开始,然后转到 RoBERTa、BERT 和 DistilBERT 模型。本书还介绍了在某些情况下可以胜过 GPT-3 的小型 Transformer 的训练方法,以及高级语言理解技术,例如优化社交网络数据集和假新闻识别。
- 使用 Transformers 和扩散模型进行生成式人工智能实践 — O’Reilly
本书是一本实用的生成式人工智能指南,重点介绍转换器和扩散模型。它涵盖了生成式人工智能项目的生命周期,包括用例定义、模型选择、微调和部署。本书旨在帮助读者将生成式人工智能应用于他们的业务用例,并提供有关模型选择、微调和与现有软件生态系统集成的实用建议。
6. 构建大型语言模型(从头开始)
本书提供了从头开始构建大型语言模型的分步指南。它涵盖了构建 LLM 的技术方面,包括模型架构、训练和部署。对于希望构建自己的 LLM 的开发人员和研究人员来说,本书是一份绝佳资源,提供有关模型架构、训练和部署的实用建议。
7. 使用 Python 预训练视觉和大型语言模型
本书提供了使用 Python 预训练视觉和大型语言模型的全面指南。它涵盖了预训练模型的技术方面,包括模型架构、训练和部署。对于希望预训练自己的模型的开发人员和研究人员来说,本书是一本绝佳的资源,提供有关模型架构、训练和部署的实用建议。
8. AWS 上的生成式人工智能 — O’Reilly
本书由 Chris Fregly、Antje Barth 和 Shelbee Eigenbrode 撰写,提供了在 AWS 上应用生成式 AI 的全面指南。它涵盖了生成式 AI 项目生命周期,包括模型选择、微调和部署。本书旨在帮助读者将生成式 AI 应用于他们的业务用例,并提供有关模型选择、微调和与现有软件生态系统集成的实用建议。
9. 使用 LangChain 生成 AI:使用 Python、ChatGPT 和其他 LLM 构建大型语言模型 (LLM) 应用程序
本书提供了使用 LangChain、Python 和 ChatGPT 构建 LLM 应用程序的实用指南。它涵盖了生成式 AI 项目生命周期,包括模型选择、微调和部署。对于希望在其应用程序中利用生成式 AI 的开发人员来说,本书是一份绝佳资源,提供有关模型选择、微调和与现有软件生态系统集成的实用建议。
10. 理解大型语言模型:学习其底层概念和技术
本书由 Thimira Amaratunga 撰写,全面介绍了 LLM,涵盖了其基本概念和技术。它探讨了对话式 AI 的兴起、NLP 的发展以及 LLM 的独特功能。本书旨在让读者掌握在项目中实施 LLM 的知识,深入了解热门 LLM 的架构及其带来的机遇。
11.设计大型语言模型应用程序 — O’Reilly
本书由 Suhas Pai 撰写,提供了构建实用产品并融入语言模型功能的实用建议。它涵盖了从演示和原型过渡到成熟应用程序的工具、技术和剧本。本书旨在帮助读者对 Transformer 架构以及每个架构决策的影响形成直观的了解。
这《12本LLM和NLP书籍》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
PDF书籍: 完整版本链接获取
👉[CSDN大礼包🎁:《
12本LLM和NLP书籍
》免费分享(安全链接,放心点击)]👈