Stable Diffusion 是一款开源的文生图人工智能模型,由 Stability AI 公司开发。它能够根据用户输入的文本生成高质量的图像,被广泛应用于创意设计、艺术创作等领域。
今天,我们就一起来实操 Stable Diffusion 的安装和部署过程。想要Stable diffusion安装包的小伙伴可以在文末扫码,我给大家免费安排!
环境准备
Stable Diffusion 的运行需要以下环境:
-
NVIDIA GPU (推荐 RTX 3080 及以上)
-
CUDA 11.3 或更高版本
-
Python 3.9 或更高版本
-
至少 10GB 显存
确保您的环境满足这些要求。
安装步骤
-
安装 Python 3.9 或更高版本。
-
安装 CUDA 11.3 或更高版本。
-
使用 pip 安装所需的 Python 依赖包: pip install -r requirements.txt`
-
下载 Stable Diffusion 模型权重文件:
wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt` -
编写一个 Python 脚本来运行 Stable Diffusion:
from diffusers import StableDiffusionPipelineimport torch# 加载模型pipe = StableDiffusionPipeline.from_pretrained(“runwayml/stable-diffusion-v1-5”, revision=“fp16”, torch_dtype=torch.float16)pipe = pipe.to(“cuda”)# 生成图像image = pipe(“A photo of a happy person.”)image.save(“output.png”)
-
运行脚本即可生成图像。
部署方式
Stable Diffusion 可以部署在多种环境中,包括:
-
本地部署:将 Stable Diffusion 安装在您自己的机器上,这种方式适合个人使用或小规模应用。
-
云端部署:将 Stable Diffusion 部署在云服务器上,这种方式适合大规模应用或需要高性能的场景。
-
Web 应用部署:将 Stable Diffusion 集成到 Web 应用中,提供在线图像生成服务。
根据您的具体需求,选择合适的部署方式即可。
实操演示
接下来,让我们一起来实操 Stable Diffusion 的图像生成过程。
我们将使用上述编写的 Python 脚本,输入文本"A photo of a happy person."来生成图像。
运行脚本后,您将在当前目录下看到一个名为 “output.png” 的图像文件,这就是 Stable Diffusion 生成的图像。
结语
通过本文,您已经了解了 Stable Diffusion 的安装和部署过程,并且亲自实操了图像生成的过程。如果您有任何问题或需求,文末扫码咨询我~
想要SD安装包和相关插件的小伙伴扫码可免费领取哦~
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
若有侵权,请联系删除