Stable Diffusion【进阶篇】:模特换装之图生图实现

文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

真人换装是图生图的一个典型应用。在图生图中可以通过局部重绘和涂鸦重绘两种方式实现,2种实现方式都差不多,不同的在于涂鸦重绘可以指定衣服的颜色。我们先看一下模特换装的实现效果。

只改变模特的上衣或者裤子。

改变整个模特的服装。

下面我们来详细看一下图生图实现模特换装的具体实现方式。这里以图生图的局部重绘为例来进行说明。

【第一步】:局部重绘图片上传以及相关参数设置

在图生图功能菜单界面,我们选择【局部

### 使用 Stable Diffusion 进行像编辑或成教程 Stable Diffusion 是一种强大的开源深度学习模型,能够成高质量的像。以下是使用 Stable Diffusion 进行像编辑和成的具体方法: #### 1. 安装 Stable Diffusion WebUI 要开始使用 Stable Diffusion,首先需要安装其 WebUI 工具。WebUI 提供了一个用户友好的界面,方便进行成和编辑操作[^2]。可以参考以下步骤完成安装: - 下载并安装 Git 和 Python。 - 克隆 Stable Diffusion WebUI 的代码仓库。 - 根据官方文档中的指南设置环境并下载预训练模型。 #### 2. 成(文Stable Diffusion 支持通过文本提示像。以下是具体步骤: - 打开 WebUI 界面,进入“文”功能模块。 - 输入描述性提示词(Prompt),例如“一个穿着红色裙子的女孩站在海边”。 - 设置采样器类型(如 DDIM、PLMS)、迭代步数、种子值等参数。 - 点击成按钮,等待模型输出结果。 #### 3. 像编辑() 如果需要对现有像进行编辑或改进,可以使用“”功能[^4]: - 在 WebUI 界面中选择“”选项。 - 上传基础像作为输入。 - 复制之前的提示词和种子值以保持一致性。 - 调整采样器、迭代步数和画面尺寸等参数。 - 注意重绘幅度不要过大,否则可能导致像变化过于剧烈。 #### 4. 内画功能与像分割结合 对于特定任务如像分割,可以结合 Stable Diffusion 的内画功能实现更精细的控制[^1]: - 准备输入像及其对应的标签/掩码。 - 使用内画技巧将成的变体与原始像融合。 - 这种方法特别适用于有限训练集的情况,可为每张成多个变体用于增强数据集。 #### 5. 应用实例 Stable Diffusion 不仅限于艺术创作,在实际应用中也有广泛用途[^3]: - **电商模特换装**:通过更换背景或调整服装颜色样式来快速成不同风格的商品展示。 - **装修效果成**:根据客户需求成个性化家居设计方案,极大提高工作效率。 ```python # 示例代码:使用Python调用Stable Diffusion API像 import requests url = "http://localhost:7860/sdapi/v1/txt2img" payload = { "prompt": "a beautiful landscape with mountains and a lake", "steps": 50, "sampler_index": "DDIM" } response = requests.post(url, json=payload) image_data = response.json()["images"][0] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值