2024年夜深人静写算法(二)- 动态规划入门_夜深人静写算法怎么样,2024年最新2024最新网络安全面经分享

本人从事网路安全工作12年,曾在2个大厂工作过,安全服务、售后服务、售前、攻防比赛、安全讲师、销售经理等职位都做过,对这个行业了解比较全面。

最近遍览了各种网络安全类的文章,内容参差不齐,其中不伐有大佬倾力教学,也有各种不良机构浑水摸鱼,在收到几条私信,发现大家对一套完整的系统的网络安全从学习路线到学习资料,甚至是工具有着不小的需求。

最后,我将这部分内容融会贯通成了一套282G的网络安全资料包,所有类目条理清晰,知识点层层递进,需要的小伙伴可以点击下方小卡片领取哦!下面就开始进入正题,如何从一个萌新一步一步进入网络安全行业。

学习路线图

其中最为瞩目也是最为基础的就是网络安全学习路线图,这里我给大家分享一份打磨了3个月,已经更新到4.0版本的网络安全学习路线图。

相比起繁琐的文字,还是生动的视频教程更加适合零基础的同学们学习,这里也是整理了一份与上述学习路线一一对应的网络安全视频教程。

网络安全工具箱

当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,你肯定需要学习各种工具的使用以及大量的实战项目,这里也分享一份我自己整理的网络安全入门工具以及使用教程和实战。

项目实战

最后就是项目实战,这里带来的是SRC资料&HW资料,毕竟实战是检验真理的唯一标准嘛~

面试题

归根结底,我们的最终目的都是为了就业,所以这份结合了多位朋友的亲身经验打磨的面试题合集你绝对不能错过!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

=

30

n = 30

n=30 就已经很变态了更别说是

1000

1000

1000。

  • 然而,方向是对的,动态规划求解之前先试想一下搜索的正确性,这里搜索的正确性是很显然的,因为已经枚举了所有情况,总有一种情况是我们要求的解。我们尝试将搜索的算法进行一些改进,假设第

i

i

i 个数取的情况下已经搜索出的最大长度记录在数组中,即用

d

[

i

]

d[i]

d[i] 表示当前搜索到的以

a

[

i

]

a[i]

a[i] 结尾的最长单调子序列的长度,那么如果下次搜索得到的序列长度小于等于

d

[

i

]

d[i]

d[i],就不必往下搜索了(因为即便继续往后枚举,能够得到的解必定不会比之前更长);反之,则需要更新

d

[

i

]

d[i]

d[i] 的值。

  • 如图二-3-1,红色路径表示第一次搜索得到的一个最长子序列1、2、3、5,蓝色路径表示第二次搜索,当枚举第3个元素取的情况时,发现以第3个数结尾的最长长度

d

[

3

]

=

3

d[3] = 3

d[3]=3,比本次枚举的长度要大(本次枚举的长度为2),所以放弃往下枚举,大大减少了搜索的状态空间。

图二-3-1

  • 这时候,我们其实已经不经意间设计好了状态,就是上文中提到的那个

d

[

i

]

d[i]

d[i] 数组,它表示的是以

a

[

i

]

a[i]

a[i] 结尾的最长单调子序列的长度,那么对于任意的

i

i

i,

d

[

i

]

d[i]

d[i] 一定等于

d

[

j

]

1

(

j

<

i

)

d[j] + 1 \ ( j < i )

d[j]+1 (j<i),而且还得满足

a

[

j

]

<

a

[

i

]

a[j] < a[i]

a[j]<a[i]。因为这里的

d

[

i

]

d[i]

d[i] 表示的是最长长度,所以

d

[

i

]

d[i]

d[i] 的表达式可以更加明确,即:

d

[

i

]

=

m

a

x

(

d

[

j

]

j

<

i

,

a

[

j

]

<

a

[

i

]

)

1

d[i] = max ( d[j] | j < i, a[j] < a[i] ) + 1

d[i]=max(d[j]∣j<i,a[j]<a[i])+1

  • 这个表达式很好的阐释了最优化原理,其中

d

[

j

]

d[j]

d[j] 作为

d

[

i

]

d[i]

d[i] 的子问题,

d

[

i

]

d[i]

d[i] 最长(优)当且仅当

d

[

j

]

d[j]

d[j] 最长(优)。当然,这个方程就是这个问题的状态转移方程。状态总数量

O

(

n

)

O(n)

O(n), 每次转移需要用到前

i

i

i 项的结果,平摊下来也是

O

(

n

)

O(n)

O(n) 的, 所以该问题的时间复杂度是

O

(

n

2

)

O(n^2)

O(n2)。

4、决策和无后效性

  • 一个状态演变到另一个状态,往往是通过“决策”来进行的。有了“决策”,就会有状态转移。而无后效性,就是一旦某个状态确定后,它之前的状态无法对它之后的状态产生“效应”(影响)。

【例题4】老王想在未来的

n

n

n 年内每年都持有电脑,

m

(

y

,

z

)

m(y, z)

m(y,z) 表示第

y

y

y 年到第

z

z

z 年的电脑维护费用,其中

y

y

y 的范围为

[

1

,

n

]

[1, n]

[1,n],

z

z

z 的范围为

[

y

,

n

]

[y, n]

[y,n],

c

c

c 表示买一台新的电脑的固定费用。 给定矩阵

m

m

m,固定费用

c

c

c,求在未来

n

n

n 年都有电脑的最少花费。

  • 考虑第

i

i

i 年是否要换电脑,换和不换是不一样的决策,那么我们定义一个二元组

(

a

,

b

)

(a, b)

(a,b),其中

a

<

b

a < b

a<b,它表示了第 a 年和第 b 年都要换电脑(第 a 年和第 b 年之间不再换电脑),如果假设我们到第 a 年为止换电脑的最优方案已经确定,那么第 a 年以前如何换电脑的一些列步骤变得不再重要,因为它并不会影响第 b 年的情况,这就是无后效性。

  • 接下来,会对这题进行一个详细的解释,当然看不懂没关系,可以跳过这个步骤,直接去看 第三章 - 动态规划的经典模型。毕竟,本文是入门级别的,后面还会花更多的时间来讲解动态规划的内容,可以和搜索一起逐步理解状态的概念。
  • 更加具体得,令

d

[

i

]

d[i]

d[i] 表示在第 i 年买了一台电脑的最小花费(由于这台电脑能用多久不确定,所以第 i 年的维护费用暂时不计在这里面),如果上一次更换电脑的时间在第 j 年,那么第 j 年更换电脑到第 i 年之前的总开销就是

c

m

(

j

,

i

1

)

c + m(j, i-1)

c+m(j,i−1)

  • 于是有状态转移方程:

d

[

i

]

=

m

i

n

(

d

[

j

]

m

(

j

,

i

1

)

1

<

=

j

<

i

)

c

d[i] = min( d[j] + m(j, i-1) | 1 <= j < i ) + c

d[i]=min(d[j]+m(j,i−1)∣1<=j<i)+c

  • 这里的

d

[

i

]

d[i]

d[i] 并不是最后问题的解,因为它漏算了第 i 年到第 n 年的维护费用,所以最后问题的答案:

a

n

s

=

m

i

n

(

d

[

i

]

m

(

i

,

n

)

1

<

=

i

<

n

)

ans = min( d[i] + m(i, n) | 1 <= i < n )

ans=min(d[i]+m(i,n)∣1<=i<n)

  • 我们发现两个方程看起来很类似,其实是可以合并的,我们可以假设第 n+1 年必须换电脑,并且第 n+1 年换电脑的费用为 0,那么整个阶段的状态转移方程就是:

d

[

i

]

=

m

i

n

(

d

[

j

]

m

(

j

,

i

1

)

1

<

=

j

<

i

)

w

(

i

)

d[i] = min( d[j] + m(j, i-1) | 1 <= j < i ) + w(i)

d[i]=min(d[j]+m(j,i−1)∣1<=j<i)+w(i)

w

(

i

)

=

{

c

i

<

n

1

0

i

=

n

1

w(i) = \begin{cases} c & i < n+1\ 0 & i=n+1 \end{cases}

w(i)={c0​i<n+1i=n+1​

  • d

[

n

1

]

d[n+1]

d[n+1] 就是我们需要求的最小费用了。

三、动态规划的经典模型

  • 本章节作者会通过图的方式,带读者了解一些基本模型,以加深对动态规划状态的理解;
  • 黄色 ■ 代表当前状态;
  • 绿色 ■ 代表子状态(已经求出的状态);
  • 红色 ■ 代表尚未求出的状态;
  • 灰色 ■ 代表永远不存在的状态;

1、线性模型

  • 线性模型是动态规划中最常见的模型,上文讲到的最长单调子序列就是经典的线性模型。
  • 线性模型的状态一般是通过 一维数组表示的,如图三-1-1所示,图中黄色块的状态为

d

[

i

]

d[i]

d[i],绿色块的状态为

d

[

j

]

d[j]

d[j],并且满足

(

j

<

i

)

(j < i)

(j<i),只有当

d

[

j

]

d[j]

d[j] 全部计算出来以后,

d

[

i

]

d[i]

d[i]的值才能够被确定。

图三-1-1

2、区间模型

  • 对比线性模型,区间模型状态一般是通过:一个二维数组来表示的
  • 区间模型的状态表示一般为

d

[

i

]

[

j

]

d[i][j]

d[i][j],表示区间

[

i

,

j

]

[i, j]

[i,j] 上的最优解,最终要求的肯定是

[

1

,

n

]

[1, n]

[1,n] 的最优解。

  • 如图三-2-1所示,既然是表示区间,所以对于状态

d

[

i

]

[

j

]

d[i][j]

d[i][j],当

i

j

i>j

i>j时,肯定是不合法的状态,所以标记为灰色;

d

[

i

]

[

j

]

d[i][j]

d[i][j] 表当前状态,标记为黄色;

图三-2-1

3、树状模型

  • 树形动态规划(树形DP),是指状态图是一棵树,状态转移也发生在树上,父结点的状态值通过所有子结点状态值计算完毕后得出,后续会专门开辟一个章节来讲述树形动态规划。
  • 状态表示如图三-3-1所示。
    在这里插入图片描述

图三-3-1

4、状态压缩模型

  • 状态压缩的含义其实是对状态进行重新编码,来看下面这个例子。
  • 假设状态是一个五维的数组,并且每一维的取值为

[

0

,

3

]

[0,3]

[0,3],状态表示如下:

d

[

a

]

[

b

]

[

c

]

[

d

]

[

e

]

(

0

<

=

a

,

b

,

c

,

d

,

e

<

=

3

)

d[a][b][c][d][e] \ (0 <= a,b,c,d,e <= 3)

d[a][b][c][d]e

  • 那么,写代码的过程中需要操作五维数组,十分繁琐,我们可以通过将状态压缩,将它重新编码到一个一维数组中。
  • 其实只要能够找到一个映射函数,满足

x

x

x 和

(

a

,

b

,

c

,

d

,

e

)

(a,b,c,d,e)

(a,b,c,d,e) 一一映射,即:

f

(

x

)

=

(

a

,

b

,

c

,

d

,

e

)

f(x) = (a,b,c,d,e)

f(x)=(a,b,c,d,e)

  • 因为每一维的取值为

[

0

,

3

]

[0,3]

[0,3],我们可以把每一维当成是 4进制数的每一位,于是有:

  • x

=

a

×

4

4

b

×

4

3

c

×

4

2

d

×

4

1

e

×

4

0

x = a \times 4^4 + b \times 4^3 + c \times 4^2 + d \times 4^1 + e \times 4^0

x=a×44+b×43+c×42+d×41+e×40

  • 那么,我们只需要用一个一维数组来表示状态即可:

d

[

x

]

d[x]

d[x]。

四、动态规划的常用状态转移方程

动态规划算法三要素(摘自黑书,总结的很好,很有概括性):
  ①所有不同的子问题组成的表
  ②解决问题的依赖关系可以看成是一个图
  ③填充子问题的顺序(即对②的图进行拓扑排序,填充的过程称为状态转移);

  • 则如果子问题的数目为

O

(

n

t

)

O(n^t)

O(nt),每个子问题需要用到

O

(

n

e

)

O(n^e)

O(ne) 个子问题的结果,那么我们称它为 tD/eD 的问题,于是可以总结出四类常用的动态规划方程:(下面会把opt作为取最优值的函数(一般取

m

i

n

min

min 或

m

a

x

max

max ),

w

(

j

,

i

)

w(j, i)

w(j,i)为一个实函数,其它变量都可以在常数时间计算出来)。

1、1D/1D

  • d

[

i

]

=

o

p

t

(

d

[

j

]

w

(

j

,

i

)

0

<

=

i

<

j

)

d[i] = opt( d[j] + w(j, i) | 0 <= i < j )

d[i]=opt(d[j]+w(j,i)∣0<=i<j)

  • 状态转移如图四-1-1所示(黄色块代表

d

[

i

]

d[i]

d[i],绿色块代表

d

[

j

]

d[j]

d[j]):

图四-1-1

  • 这类状态转移方程一般出现在线性模型中。

2、2D/0D

  • d

[

i

]

[

j

]

=

o

p

t

(

d

[

i

1

]

[

j

]

x

i

,

d

[

i

]

[

j

1

]

y

j

,

d

[

i

1

]

[

j

1

]

z

i

j

)

d[i][j] = opt( d[i-1][j] + x_i, d[i][j-1] + y_j, d[i-1][j-1] + z_{ij} )

d[i][j]=opt(d[i−1][j]+xi​,d[i][j−1]+yj​,d[i−1][j−1]+zij​)

  • 状态转移如图四-2-1所示:

图四-2-1

3、2D/1D

  • d

[

i

]

[

j

]

=

w

(

i

,

j

)

o

p

t

(

d

[

i

]

[

k

1

]

d

[

k

]

[

j

]

)

d[i][j] = w(i, j) + opt( d[i][k-1] + d[k][j] )

d[i][j]=w(i,j)+opt(d[i][k−1]+d[k][j])

  • 区间模型常用方程,如图四-3-1所示:
    在这里插入图片描述

四-3-1

  • 另外一种常用的 2D/1D 的方程为:
  • d

[

i

]

[

j

]

=

o

p

t

(

d

[

i

1

]

[

k

]

w

(

i

,

j

,

k

)

k

<

j

)

d[i][j] = opt( d[i-1][k] + w(i, j, k) | k < j )

d[i][j]=opt(d[i−1][k]+w(i,j,k)∣k<j)

4、2D/2D

  • d

[

i

]

[

j

]

=

o

p

t

(

d

[

i

]

[

j

]

w

(

i

,

j

,

i

,

j

)

0

<

=

i

<

i

,

0

<

=

j

<

j

)

d[i][j] = opt( d[i’][j’] + w(i’, j’, i, j) | 0 <= i’ < i, 0 <= j’ < j)

d[i][j]=opt(d[i′][j′]+w(i′,j′,i,j)∣0<=i′<i,0<=j′<j)

  • 如图四-4-1所示:
    在这里插入图片描述

四-4-1

  • 常见于二维的迷宫问题,由于复杂度比较大,所以一般配合数据结构优化,如线段树、树状数组等。
  • 对于一个tD/eD 的动态规划问题,在不经过任何优化的情况下,可以粗略得到一个时间复杂度是

O

(

n

t

e

)

O(n^ {t+e})

O(nt+e),空间复杂度是

O

(

n

t

)

O(n^t)

O(nt) 的算法,大多数情况下空间复杂度是很容易优化的,难点在于时间复杂度,后续章节将详细讲解各种情况下的动态规划优化算法。


  • 关于 动态规划入门 的内容到这里就结束了。
  • 如果还有不懂的问题,可以 想方设法 找到作者的微信进行在线咨询。


五、动态规划题集整理

1、递推

题目链接难度解法
Recursion Practice★☆☆☆☆几个初级递推
Put Apple★☆☆☆☆
Tri Tiling★☆☆☆☆【例题1】
Computer Transformation★☆☆☆☆【例题2】
Train Problem II★☆☆☆☆
How Many Trees?★☆☆☆☆
Buy the Ticket★☆☆☆☆
Game of Connections★☆☆☆☆
Count the Trees★☆☆☆☆
Circle★☆☆☆☆
Combinations, Once Again★★☆☆☆
Closing Ceremony of Sunny Cup★★☆☆☆
Rooted Trees Problem★★☆☆☆
Water Treatment Plants★★☆☆☆
One Person★★☆☆☆
Relax! It’s just a game★★☆☆☆

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以点击这里获取

,

j

)

0

<

=

i

<

i

,

0

<

=

j

<

j

)

d[i][j] = opt( d[i’][j’] + w(i’, j’, i, j) | 0 <= i’ < i, 0 <= j’ < j)

d[i][j]=opt(d[i′][j′]+w(i′,j′,i,j)∣0<=i′<i,0<=j′<j)

  • 如图四-4-1所示:
    在这里插入图片描述

四-4-1

  • 常见于二维的迷宫问题,由于复杂度比较大,所以一般配合数据结构优化,如线段树、树状数组等。
  • 对于一个tD/eD 的动态规划问题,在不经过任何优化的情况下,可以粗略得到一个时间复杂度是

O

(

n

t

e

)

O(n^ {t+e})

O(nt+e),空间复杂度是

O

(

n

t

)

O(n^t)

O(nt) 的算法,大多数情况下空间复杂度是很容易优化的,难点在于时间复杂度,后续章节将详细讲解各种情况下的动态规划优化算法。


  • 关于 动态规划入门 的内容到这里就结束了。
  • 如果还有不懂的问题,可以 想方设法 找到作者的微信进行在线咨询。


五、动态规划题集整理

1、递推

题目链接难度解法
Recursion Practice★☆☆☆☆几个初级递推
Put Apple★☆☆☆☆
Tri Tiling★☆☆☆☆【例题1】
Computer Transformation★☆☆☆☆【例题2】
Train Problem II★☆☆☆☆
How Many Trees?★☆☆☆☆
Buy the Ticket★☆☆☆☆
Game of Connections★☆☆☆☆
Count the Trees★☆☆☆☆
Circle★☆☆☆☆
Combinations, Once Again★★☆☆☆
Closing Ceremony of Sunny Cup★★☆☆☆
Rooted Trees Problem★★☆☆☆
Water Treatment Plants★★☆☆☆
One Person★★☆☆☆
Relax! It’s just a game★★☆☆☆

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
[外链图片转存中…(img-lpfrNttC-1714897892012)]
[外链图片转存中…(img-tBp1v99V-1714897892013)]
[外链图片转存中…(img-DaY2pIwl-1714897892013)]
[外链图片转存中…(img-MVeTZeys-1714897892014)]
[外链图片转存中…(img-cjgkTKx0-1714897892014)]
[外链图片转存中…(img-Ae3U6VRR-1714897892015)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以点击这里获取

  • 24
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值