先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注Java)
正文
HashMap的结构:
1.1 动态数组
我们先看最上层。
通过结构图我们看出,HashMap就是一个可以扩容的动态数组。考虑到扩容的需要,该动态数组有着以下属性:
-
capacity:目前数组的长度。为了实现高效的扩容,其值总为2^n的形式。每次扩容后,n会加1,即整个数组的容量变为之前的2倍。该值初始默认值为16
-
loadFactor:负载因子,默认值为 0.75。该值与threshold配合使用
-
threshold:扩容的阈值,等于 capacity * loadFactor。即当数组内达到这么多元素时,会触发数组的扩容
1.2 数组元素
数组中的每个元素是一个Node,它的属性有:
-
hash: 当前位置值的hash值
-
key:当前位置的键
-
value: 当前位置存储的值
-
next;下一个Node
1.3 列表或者树
对于每个Node元素,我们发现它有一个next属性。而通过它,挂载到数组同一个位置的多个Node就组成了列表或者树。
在Java1.7阶段,是不存在树的,即挂载到数组同一个位置的多个Node通过next属性构成了一个单向链表。
而在Java1.8中,当单项链表中元素大于等于8时,单项列表会变为一棵树。该树为红黑树。该转化操作是由final void treeifyBin(Node<K,V>[] tab, int hash)函数实现的。
因为链表的查找时间复杂度为O(N),而红黑树查找的时间复杂度为 O(logN)。因此,在数组的同一位置挂载的节点较多时,Java1.8的设计会降低时间复杂度。
HashMap的初始化操作非常简单,就是确定initialCapacity,loadFactor的初始值的过程。
平时,我们调用无参构造函数public HashMap()时,所有的值会采用默认值。即loadFactor=0.75。
如果我们传入initialCapacity,loadFactor,则会调用下面的方法。
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
但是有一点要注意,在进行初始化操作时,只是初始化了创建数组的相关参数,并没有真正创建动态数组。真正动态数组的创建是在第一次进行数据写入时引发的。
这样实际上是一种懒加载操作,防止了初始化后而不用的内存浪费。
向HashMap中写入数据的过程,简单总结起来分为这么几步:
-
计算要插入数据的Hash值,并根据该值确定元素的插入位置(即在动态数组中的位置)
-
将元素放入到数组的指定位置
-
如果该数组位置之前没有元素,则直接放入
-
放入该位置后,数组元素超过扩容阈值,则对数组进行扩容
-
放入该位置后,数组元素没超过扩容阈值,写入结束
-
如果该数组位置之前有元素,则挂载到已有元素的后端
-
如果之前元素组成了树,则挂入树的指定位置
-
如果之前元素组成了链表
-
如果加入该元素链表长度超过8,则将链表转化为红黑树后插入
-
如果加入该元素链表长度不超过8,则直接插入
实际的操作要比这些复杂以下,我们直接结合源码进行分析。相关关键步骤我添加了注释。
// 供外部调用的方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 这里如果发现动态数组为null则会初始化数组。因此第一次放入值时会在这里初始化数组
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 通过hash发现要放入的元素的数组位置为null,则直接把该元素放在这里即可
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
// 如果要放入的位置已经有元素了
Node<K,V> e; K k;
// 判断原位置第一个元素是否和新元素key完全一致
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 说明是红黑树,按照红黑树方法放入新节点
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 说明是列表,按照列表方法放入新节点
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 如果放入列表后列表过长,则将列表转为红黑树
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 这里说明新值和旧值的key完全相同,进行覆盖操作
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
相比于数据写入,数据读取操作要简单一些。总体过程总结为:
-
根据要取得key的值,hash出数组中的指定位置
-
取出指定位置的元素(这时,key的hash值是一样的)
-
如果key也完全一样,则返回该值,查找结束
-
如果key不一样,判断其后面挂载的是树还是列表
-
如果是树,按照树的方法查找
-
如果是列表,按照列表的方法查找
到达任何一步发现没有结果,则说明key在map中不存在,直接返回null即可。
代码和相关注释如下:
// 供外部调用的方法
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 判断数组存在且不为空,否则直接返回null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
// 第一个节点key与要查找的完全一致
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 第一个节点key与要查找的不一致
if (first instanceof TreeNode)
// 按照树的方法查找
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 按照列表方法查找
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
谈数组扩容之前,我们先带着一个疑问:为什么数组大小必须是2^n?
我们知道扩容分两步:
最后
我想问下大家当初选择做程序员的初衷是什么?有思考过这个问题吗?高薪?热爱?
既然入了这行就应该知道,这个行业是靠本事吃饭的,你想要拿高薪没有问题,请好好磨练自己的技术,不要抱怨。有的人通过培训可以让自己成长,有些人可以通过自律强大的自学能力成长,如果你两者都不占,还怎么拿高薪?
架构师是很多程序员的职业目标,一个好的架构师是不愁所谓的35岁高龄门槛的,到了那个时候,照样大把的企业挖他。为什么很多人想进阿里巴巴,无非不是福利待遇好以及优质的人脉资源,这对个人职业发展是有非常大帮助的。
如果你也想成为一名好的架构师,那或许这份Java核心架构笔记你需要阅读阅读,希望能够对你的职业发展有所帮助。
中高级开发必知必会:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
很多人想进阿里巴巴,无非不是福利待遇好以及优质的人脉资源,这对个人职业发展是有非常大帮助的。
如果你也想成为一名好的架构师,那或许这份Java核心架构笔记你需要阅读阅读,希望能够对你的职业发展有所帮助。
中高级开发必知必会:
[外链图片转存中…(img-osSperS9-1713418691984)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
[外链图片转存中…(img-On8rAuNt-1713418691984)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!