2024年最新写给前端的算法进阶指南,我是如何两个月零基础刷200题,2024年最新金三银四前端高级工程师面试题整理

总结一下

面试前要精心做好准备,简历上写的知识点和原理都需要准备好,项目上多想想难点和亮点,这是面试时能和别人不一样的地方。

还有就是表现出自己的谦虚好学,以及对于未来持续进阶的规划,企业招人更偏爱稳定的人。

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

万事开头难,但是程序员这一条路坚持几年后发展空间还是非常大的,一切重在坚持。

为了帮助大家更好更高效的准备面试,特别整理了《前端工程师面试手册》电子稿文件。

前端面试题汇总

JavaScript

性能

linux

前端资料汇总

前端工程师岗位缺口一直很大,符合岗位要求的人越来越少,所以学习前端的小伙伴要注意了,一定要把技能学到扎实,做有含金量的项目,这样在找工作的时候无论遇到什么情况,问题都不会大。

给定 1->2->3->4, 你应该返回 2->1->4->3.

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/swap-nodes-in-pairs

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


这题本意比较简单,1 -> 2 -> 3 -> 4 的情况下可以定义一个递归的辅助函数 helper,这个辅助函数对于节点和它的下一个节点进行交换,比如 helper(1) 处理 1 -> 2,并且把交换变成 2 -> 1 的尾节点 1next继续指向 helper(3)也就是交换后的 4 -> 3

边界情况在于,如果顺利的作了两两交换,那么交换后我们的函数返回出去的是 交换后的头部节点,但是如果是奇数剩余项的情况下,没办法做交换,那就需要直接返回 原本的头部节点。这个在 helper函数和主函数中都有体现。

let swapPairs = function (head) {

if (!head) return null

let helper = function (node) {

let tempNext = node.next

if (tempNext) {

let tempNextNext = node.next.next

node.next.next = node

if (tempNextNext) {

node.next = helper(tempNextNext)

} else {

node.next = null

}

}

return tempNext || node

}

let res = helper(head)

return res || head

}

深度优先遍历问题

二叉树的所有路径-257

给定一个二叉树,返回所有从根节点到叶子节点的路径。

说明:  叶子节点是指没有子节点的节点。

示例:

输入:

1

/   \

2     3

\

5

输出: [“1->2->5”, “1->3”]

解释: 所有根节点到叶子节点的路径为: 1->2->5, 1->3

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/binary-tree-paths

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


用当前节点的值去拼接左右子树递归调用当前函数获得的所有路径。

也就是根节点拼上以左子树为根节点得到的路径,加上根节点拼上以右子树为根节点得到的所有路径。

直到叶子节点,仅仅返回包含当前节点的值的数组。

let binaryTreePaths = function (root) {

let res = []

if (!root) {

return res

}

if (!root.left && !root.right) {

return [${root.val}]

}

let leftPaths = binaryTreePaths(root.left)

let rightPaths = binaryTreePaths(root.right)

leftPaths.forEach((leftPath) => {

res.push(${root.val}->${leftPath})

})

rightPaths.forEach((rightPath) => {

res.push(${root.val}->${rightPath})

})

return res

}

广度优先遍历(BFS)问题

在每个树行中找最大值-515

https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row

您需要在二叉树的每一行中找到最大的值。

输入:

1

/ \

3   2

/ \   \

5   3   9

输出: [1, 3, 9]


这是一道典型的 BFS 题目,BFS 的套路其实就是维护一个 queue 队列,在读取子节点的时候同时把发现的孙子节点 push 到队列中,但是先不处理,等到这一轮队列中的子节点处理完成以后,下一轮再继续处理的就是孙子节点了,这就实现了层序遍历,也就是一层层的去处理。

但是这里有一个问题卡住我了一会,就是如何知道当前处理的节点是哪个层级的,在最开始的时候我尝试写了一下二叉树求某个 index 所在层级的公式,但是发现这种公式只能处理「平衡二叉树」。

后面看题解发现他们都没有专门维护层级,再仔细一看才明白层级的思路:

其实就是在每一轮 while 循环里,再开一个 for 循环,这个 for 循环的终点是「提前缓存好的 length 快照」,也就是进入这轮 while 循环时,queue 的长度。其实这个长度就恰好代表了「一个层级的长度」。

缓存后,for 循环里可以安全的把子节点 push 到数组里而不影响缓存的当前层级长度。

另外有一个小 tips,在 for 循环处理完成后,应该要把 queue 的长度截取掉上述的缓存长度。一开始我使用的是 queue.splice(0, len),结果速度只击败了 33%的人。后面换成 for 循环中去一个一个shift来截取,速度就击败了 77%的人。

/**

* @param {TreeNode} root

* @return {number[]}

*/

let largestValues = function (root) {

if (!root) return []

let queue = [root]

let maximums = []

while (queue.length) {

let max = Number.MIN_SAFE_INTEGER

// 这里需要先缓存length 这个length代表当前层级的所有节点

// 在循环开始后 会push新的节点 length就不稳定了

let len = queue.length

for (let i = 0; i < len; i++) {

let node = queue[i]

max = Math.max(node.val, max)

if (node.left) {

queue.push(node.left)

}

if (node.right) {

queue.push(node.right)

}

}

// 本「层级」处理完毕,截取掉。

for (let i = 0; i < len; i++) {

queue.shift()

}

// 这个for循环结束后 代表当前层级的节点全部处理完毕

// 直接把计算出来的最大值push到数组里即可。

maximums.push(max)

}

return maximums

}

栈问题

有效的括号-20

给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。

有效字符串需满足:

  • 左括号必须用相同类型的右括号闭合。

  • 左括号必须以正确的顺序闭合。

  • 注意空字符串可被认为是有效字符串。

示例 1:

输入: “()”

输出: true

示例 2:

输入: “()[]{}”

输出: true

示例 3:

输入: “(]”

输出: false

示例 4:

输入: “([)]”

输出: false

示例 5:

输入: “{[]}”

输出: true

https://leetcode-cn.com/problems/valid-parentheses


提前记录好左括号类型 (, {, [和右括号类型), }, ]的映射表,当遍历中遇到左括号的时候,就放入栈 stack 中(其实就是数组),当遇到右括号时,就把 stack 顶的元素 pop 出来,看一下是否是这个右括号所匹配的左括号(比如 ( 和 ) 是一对匹配的括号)。

当遍历结束后,栈中不应该剩下任何元素,返回成功,否则就是失败。

/**

* @param {string} s

* @return {boolean}

*/

let isValid = function (s) {

let sl = s.length

if (sl % 2 !== 0) return false

let leftToRight = {

“{”: “}”,

“[”: “]”,

“(”: “)”,

}

// 建立一个反向的 value -> key 映射表

let rightToLeft = createReversedMap(leftToRight)

// 用来匹配左右括号的栈

let stack = []

for (let i = 0; i < s.length; i++) {

let bracket = s[i]

// 左括号 放进栈中

if (leftToRight[bracket]) {

stack.push(bracket)

} else {

let needLeftBracket = rightToLeft[bracket]

// 左右括号都不是 直接失败

if (!needLeftBracket) {

return false

}

// 栈中取出最后一个括号 如果不是需要的那个左括号 就失败

let lastBracket = stack.pop()

if (needLeftBracket !== lastBracket) {

return false

}

}

}

if (stack.length) {

return false

}

return true

}

function createReversedMap(map) {

return Object.keys(map).reduce((prev, key) => {

const value = map[key]

prev[value] = key

return prev

}, {})

}

递归与回溯

直接看我写的这两篇文章即可,递归与回溯甚至是平常业务开发中最常见的算法场景之一了,所以我重点总结了两篇文章。

《前端电商 sku 的全排列算法很难吗?学会这个套路,彻底掌握排列组合。》[1]

前端「N 皇后」递归回溯经典问题图解[2]

动态规划

打家劫舍 - 198

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]

输出: 4

解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。

偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]

输出: 12

解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。

偷窃到的最高金额 = 2 + 9 + 1 = 12 。

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/house-robber 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


动态规划的一个很重要的过程就是找到「状态」和「状态转移方程」,在这个问题里,设 i是当前屋子的下标,状态就是 以 i 为起点偷窃的最大价值

在某一个房子面前,盗贼只有两种选择:偷或者不偷

  1. 偷的话,价值就是「当前房子的价值」+「下两个房子开始盗窃的最大价值」

  2. 不偷的话,价值就是「下一个房子开始盗窃的最大价值」

在这两个值中,选择最大值记录在 dp[i]中,就得到了以 i 为起点所能偷窃的最大价值。

动态规划的起手式,找基础状态,在这题中,以终点为起点的最大价值一定是最好找的,因为终点不可能再继续往后偷窃了,所以设 n 为房子的总数量, dp[n - 1] 就是 nums[n - 1],小偷只能选择偷窃这个房子,而不能跳过去选择下一个不存在的房子。

那么就找到了动态规划的状态转移方程:

// 抢劫当前房子

robNow = nums[i] + dp[i + 2] // 「当前房子的价值」 + 「i + 2 下标房子为起点的最大价值」

// 不抢当前房子,抢下一个房子

robNext = dp[i + 1] //「i + 1 下标房子为起点的最大价值」

// 两者选择最大值

dp[i] = Math.max(robNow, robNext)

,并且从后往前求解。

function (nums) {

if (!nums.length) {

return 0;

}

let dp = [];

for (let i = nums.length - 1; i >= 0; i–) {

let robNow = nums[i] + (dp[i + 2] || 0)

let robNext = dp[i + 1] || 0

dp[i] = Math.max(robNow, robNext)

}

return dp[0];

};

最后返回 以 0 为起点开始打劫的最大价值 即可。

贪心算法问题

分发饼干-455

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值  gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

注意:

你可以假设胃口值为正。一个小朋友最多只能拥有一块饼干。

示例 1:

输入: [1,2,3], [1,1]

输出: 1

解释:

你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。

虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。

所以你应该输出1。

示例 2:

输入: [1,2], [1,2,3]

输出: 2

解释:

你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。

你拥有的饼干数量和尺寸都足以让所有孩子满足。

所以你应该输出2.

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/assign-cookies 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


把饼干和孩子的需求都排序好,然后从最小的饼干分配给需求最小的孩子开始,不断的尝试新的饼干和新的孩子,这样能保证每个分给孩子的饼干都恰到好处的不浪费,又满足需求。

利用双指针不断的更新 i 孩子的需求下标和 j饼干的值,直到两者有其一达到了终点位置:

  1. 如果当前的饼干不满足孩子的胃口,那么把 j++ 寻找下一个饼干,不用担心这个饼干被浪费,因为这个饼干更不可能满足下一个孩子(胃口更大)。

  2. 如果满足,那么 i++; j++; count++ 记录当前的成功数量,继续寻找下一个孩子和下一个饼干。

/**

* @param {number[]} g

* @param {number[]} s

* @return {number}

*/

let findContentChildren = function (g, s) {

g.sort((a, b) => a - b)

s.sort((a, b) => a - b)

let i = 0

let j = 0

let count = 0

while (j < s.length && i < g.length) {

let need = g[i]

let cookie = s[j]

if (cookie >= need) {

count++

i++

j++

} else {

j++

}

}

return count

}

必做题目


其实写了这么多,以上分类所提到的题目,只是当前分类下比较适合作为例题来讲解的题目而已,在整个 LeetCode 学习过程中只是冰山一角。这些题可以作为你深入这个分类的一个入门例题,但是不可避免的是,你必须去下苦功夫刷每个分类下的其他经典题目

如果你信任我,你也可以在我维护的题解仓库的 Issues 中[3]获取各个分类下必做题目的详细题解(拿到了记得收藏),我跟着一个ACM 亚洲区奖牌获得者给出的提纲,整理了100+道必做题目的详细题解

那么什么叫必做题目呢?

  1. 它核心考察算法思想,而不是奇巧淫技。

  2. 它考察的知识点,可以举一反三的应用到很多相似题目上。

  3. 面试热门题,大厂喜欢考这个题目,说明这个知识点很重要。

当然你也可以去知乎等平台搜索相关的问题,也会有很多人总结,但是比我总结的全的不多见。100 多题说多也不多,说少也不少。认真学习、解答、吸收这些题目大概要花费1 个月左右的时间。但是相信我,1 个月以后你在算法方面会脱胎换骨,应对国内大厂的算法面试也会变得游刃有余。

总结

框架相关

原生JS虽能实现绝大部分功能,但要么就是过于繁琐,要么就是存在缺陷,故绝大多数开发者都会首选框架开发方案。现阶段较热门是React、Vue两大框架,两者工作原理上存在共通点,也存在一些不同点,对于校招来说,不需要两个框架都学得特别熟,一般面试官会针对你简历中写的框架进行提问。

在框架方面,生命周期、钩子函数、虚拟DOM这些基本知识是必须要掌握的,在学习的过程可以结合框架的官方文档

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

Vue框架

知识要点:
1. vue-cli工程
2. vue核心知识点
3. vue-router
4. vuex
5. http请求
6. UI样式
7. 常用功能
8. MVVM设计模式

React框架

知识要点:
1. 基本知识
2. React 组件
3. React Redux
4. React 路由

取各个分类下必做题目的详细题解(拿到了记得收藏),我跟着一个ACM 亚洲区奖牌获得者给出的提纲,整理了100+道必做题目的详细题解

那么什么叫必做题目呢?

  1. 它核心考察算法思想,而不是奇巧淫技。

  2. 它考察的知识点,可以举一反三的应用到很多相似题目上。

  3. 面试热门题,大厂喜欢考这个题目,说明这个知识点很重要。

当然你也可以去知乎等平台搜索相关的问题,也会有很多人总结,但是比我总结的全的不多见。100 多题说多也不多,说少也不少。认真学习、解答、吸收这些题目大概要花费1 个月左右的时间。但是相信我,1 个月以后你在算法方面会脱胎换骨,应对国内大厂的算法面试也会变得游刃有余。

总结

框架相关

原生JS虽能实现绝大部分功能,但要么就是过于繁琐,要么就是存在缺陷,故绝大多数开发者都会首选框架开发方案。现阶段较热门是React、Vue两大框架,两者工作原理上存在共通点,也存在一些不同点,对于校招来说,不需要两个框架都学得特别熟,一般面试官会针对你简历中写的框架进行提问。

在框架方面,生命周期、钩子函数、虚拟DOM这些基本知识是必须要掌握的,在学习的过程可以结合框架的官方文档

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

Vue框架

知识要点:
1. vue-cli工程
2. vue核心知识点
3. vue-router
4. vuex
5. http请求
6. UI样式
7. 常用功能
8. MVVM设计模式

[外链图片转存中…(img-wduRMiSH-1715742535907)]

React框架

知识要点:
1. 基本知识
2. React 组件
3. React Redux
4. React 路由

[外链图片转存中…(img-cJIzg4Mz-1715742535908)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值