总结
根据路线图上的重点去进行有针对性的学习,在学习过程中,学会写笔记,做总结。
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
这里分享一些前端学习笔记:
-
html5 / css3 学习笔记
-
JavaScript 学习笔记
-
Vue 学习笔记
优点:
-
简单,代码方便,性能可以接受。
-
数字ID天然排序,对分页或者需要排序的结果很有帮助。
缺点:
-
不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。
-
单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。
-
性能达不到要求的情况下,比较难于扩展。(不适用于海量高并发)
-
如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。
-
分表分库的时候会有麻烦。
-
非一定连续,类似MySQL,当生成新ID的事务回滚,那么后续的事务也不会再用这个ID了。这个在性能和连续性的折中。如果为了保证连续,必须要在事务结束后才能生成ID,那性能就会出现问题。
-
在分布式数据库中,如果采用了自增主键的话,有可能会带来尾部热点。分布式数据库常常使用range的分区方式,在大量新增记录的时候,IO会集中在一个分区上,造成热点数据。
优化方案:
针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。
常见的方式。可以利用数据库也可以利用程序生成,一般来说全球唯一。UUID是由32个的16进制数字组成,所以每个UUID的长度是128位(16^32 = 2^128)。UUID作为一种广泛使用标准,有多个实现版本,影响它的因素包括时间、网卡MAC地址、自定义Namesapce等等。
优点:
-
简单,代码方便。
-
生成ID性能非常好,基本不会有性能问题。
-
全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。
缺点:
-
没有排序,无法保证趋势递增。
-
UUID往往是使用字符串存储,查询的效率比较低。
-
存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。
-
传输数据量大
-
不可读。
1)为了解决UUID不可读,可以使用UUID to Int64的方法。及
public static long GuidToInt64()
{
byte[] bytes = Guid.NewGuid().ToByteArray();
return BitConverter.ToInt64(bytes, 0);
}
2)为了解决UUID无序的问题,NHibernate在其主键生成方式中提供了Comb算法(combined guid/timestamp)。保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime)。
private Guid GenerateComb()
{
byte[] guidArray = Guid.NewGuid().ToByteArray();
DateTime baseDate = new DateTime(1900, 1, 1);
DateTime now = DateTime.Now;
// Get the days and milliseconds which will be used to build
//the byte string
TimeSpan days = new TimeSpan(now.Ticks - baseDate.Ticks);
TimeSpan msecs = now.TimeOfDay;
// Convert to a byte array
// Note that SQL Server is accurate to 1/300th of a
// millisecond so we divide by 3.333333
byte[] daysArray = BitConverter.GetBytes(days.Days);
byte[] msecsArray = BitConverter.GetBytes((long)
(msecs.TotalMilliseconds / 3.333333));
// Reverse the bytes to match SQL Servers ordering
Array.Reverse(daysArray);
Array.Reverse(msecsArray);
// Copy the bytes into the guid
Array.Copy(daysArray, daysArray.Length - 2, guidArray,
guidArray.Length - 6, 2);
Array.Copy(msecsArray, msecsArray.Length - 4, guidArray,
guidArray.Length - 4, 4);
return new Guid(guidArray);
}
用上面的算法测试一下,得到如下的结果:作为比较,前面3个是使用COMB算法得出的结果,最后12个字符串是时间序(统一毫秒生成的3个UUID),过段时间如果再次生成,则12个字符串会比图示的要大。后面3个是直接生成的GUID。
ODX}_4N5X$F93OAS~
8Z)C
如果想把时间序放在前面,可以生成后改变12个字符串的位置,也可以修改算法类的最后两个Array.Copy。
当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作 INCR和INCRBY来实现。
可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:
A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
最后
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
大厂面试问深度,小厂面试问广度,如果有同学想进大厂深造一定要有一个方向精通的惊艳到面试官,还要平时遇到问题后思考一下问题的本质,找方法解决是一个方面,看到问题本质是另一个方面。还有大家一定要有目标,我在很久之前就想着以后一定要去大厂,然后默默努力,每天看一些大佬们的文章,总是觉得只有再学深入一点才有机会,所以才有恒心一直学下去。