先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注网络安全)
正文
MEAT,全称为Mobile Evidence Acquisition Toolkit,即移动设备取证采集工具。该工具旨在帮助安全取证人员在iOS设备上执行不同类型的信息采集任务,将来该工具会添加针对Android设备的支持。
工具要求
Windows或Linux系统
Python 3.7.4或7.2环境
pip包,具体参考txt
已测试的平台
该工具的当前版本已在iPhone X iOS 13.3和iPhone XS iOS 12.4上进行过测试。
工具下载
广大研究人员可以通过下列命令将该项目源码克隆至本地:
git clone https://github.com/jfarley248/MEAT.git
工具帮助信息
usage: MEAT.py [-h] [-iOS] [-filesystem] [-filesystemPath FILESYSTEMPATH]
[-logical] [-md5] [-sha1] -o OUTPUTDIR [-v]
MEAT - Mobile Evidence Acquisition Toolkit
optional arguments:
-h, --help 显示帮助信息并退出
-iOS 在iOS设备上执行信息采集
-filesystem 执行文件系统采集
-filesystemPath 文件系统路径,需配合–filesystem参数使用,默认为"/"
-logical 执行逻辑采集,使用AFC访问内容
-md5 使用MD5算法获取哈希文件,输出至Hash_Table.csv
-sha1 使用MD5算法获取哈希文件,输出至Hash_Table.csv
-o OUTPUTDIR 存储输出文件的目录
-v 开启Verbose模式
支持的采集类型
iOS设备-逻辑采集
在MEAT上使用逻辑采集功能,将指示工具通过越狱设备的AFC提取可访问的文件和文件夹。
允许访问的文件夹为“\private\var\mobile\Media”,其中将包含下列文件夹:
AirFair
Books
DCIM
Downloads
general_storage
iTunes_Control
MediaAnalysis
PhotoData
Photos
给大家的福利
零基础入门
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
同时每个成长路线对应的板块都有配套的视频提供:
因篇幅有限,仅展示部分资料
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注网络安全)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**