人工智能AI在中医药领域中应用场景

人工智能的迅速发展将深刻改变人类社会生活、改变世界,人工智能可以很好辅助我们对现有历史文献、数据、科研成果的阅读、理解,提升我们对世界、事物、场景等边界的认知,在中医药领域也将产生很多应用场景,如中医医疗、中药研发、注册申报、审评审批、生产流通使用及其监管。

一、中药研发领域的应用场景

@中药研发的应用场景

图片

二、中医医疗、药品监管领域的应用场景

@涉中医药的应用场景(中医医疗、药品监管)

序号

应用场景

文献出处

重大科学问题和发现的研究突破

1

充分发挥人工智能技术在文献数据获取、实验预测、结果分析等方面作用,重点围绕新药创制等领域,以需求为牵引谋划人工智能技术应用场景,融合人工智能模型算法领域数据知识,实现重大科学问题和发现的研究突破

B5

“人工智能+”中医药管理服务(医疗领域

2

中医临床智能辅助诊疗:应用中医四诊智能诊断设备采集全过程中医临床四诊数据,基于中医药知识库,建立中医大数据诊疗模型,针对患者症状、诊断和相关病史自动推荐中医诊疗方案

B6

3

中医经络智能检测:中医经络、现代全息理论为基础,应用人工智能技术模拟中医临床诊断过程,为临床诊疗提供辅助参考

B6

4

中药智能审方:依据中医药配伍规则,智能提醒医生合理遣方用药,智能辅助药师开展中药饮片处方点评

B6

5

中医临床病案智能质控:基于中医临床辨证论治理论,采用大数据存储、深度学习算法等技术,建立中医病案理法方药一致的内涵质控垂直类大模型提升中医临床病案的书写质量

B6

6

名中医学术思想智能传承:通过挖掘名中医经验,基于深度学习等人工智能技术实现名中医数字化传承,辅助培养学术传承人。

B6

7

中医药科研智能辅助:辅助医生采集中医诊疗全过程真实世界数据,支撑中医的人用经验转化为临床真实世界数据证据

B6

“人工智能+”药品监管服务(药品监管领域)

8

药品注册形式审查:

  • 构建基于相关法律法规的大语言模型,利用人工智能对药品注册电子化申报材料的自动化智能审查快速确定其材料的合规性,并对申报产品的研究数据进行分析和比对,初步辨析数据的真实性,并提供不符合项的具体依据

  • 在形式审查系统与行政审批系统之间建立基于人工智能分析模型的材料自动关联,进行产品有关信息的自动比对

  • 基于大语言模型还可以自动撰写不予受理通知书或申请材料补正通知书草稿,提升形式审查工作的效率。

B7

9

药品注册辅助审评:

  • 训练药品注册的大语言模型,通过人工智能的赋能,加快审评效率,减少重复性工作,审评人员能够更加专注于专业判断和决策。

  • 利用分析模板指导模型对材料进行结构化处理,自动提取材料中的关键信息,如药品成分、用途、使用方法、检验结果、审评意见等。

  • 利用人工智能的文本比对技术,对企业的补充材料和初始材料进行自动比对,并智能提示差异点

  • 进一步训练大语言模型,用于审批资料整理及技术核查工作,辅助审评员缩短审核时间。

  • 利用人工智能自动对比企业提交的附条件审批药品上市后研究材料与原批件条件、药品上市后变更情况与变更验证情况。

B7

10

药品注册批件整理:

  • 利用人工智能技术对批件文档的识别和处理,结合批件结构化处理模板,自动从批件文本中提取关键内容信息实现批件信息的结构化自动整理分析

B7

11

药品远程监管:

  • 利用人工智能与大数据技术,综合分析品种安全信息、上市许可持有人信用信息、生产检验过程信息、生产场地信息、监测评价风险信息、产品追溯信息等关键环节数据识别风险因子,研究建立生产检验数据靶向分析模型和远程监管风险预警模型,对各类风险趋势进行预判。

  • 通过人工智能开展数据联动分析,自动核算并智能分析原料供应商与生产企业、生产企业与经营企业的相关记录信息和数据,判断是否存在信息不匹配与逻辑漏洞

B7

12

药品现场监管:

1. 用于辅助现场检查的准备工作

  • 深度分析和推理既往检查报告、检查目标以及企业信息等数据,提供检查重点、潜在风险点、抽检方式等建议,提示累计风险

  • 基于长期的数据积累,构建检查任务画像和检查人员画像,利用人工智能技术自动筛选推荐检查员,评价工作效能。

  • 优化现场检查,有助于检查效率与质量的提高。

2. 辅助检查人员撰写检查报告

  • 以既往检查报告格式为模板,将本次检查的电子化记录内容输入人工智能分析模型,自动撰写本次检查报告草稿

B7

13

辅助药品抽检工作:

  • 利用人工智能技术,结合模板对电子报告中的图片、产品图片等进行结构化解析,自动提取关键信息,并将其与系统填报的信息进行比对,大幅减轻工作人员手工输入抽样信息的压力。

  • 阅读解析与汇总分析、机构化处理监督抽检报告,精准提取关键数据与结论,汇总监督抽检数据,总结监督抽检结果,自动撰写监督抽检情况分析报告草稿

B7

14

辅助药品稽查办案:

  • 利用人工智能技术,将现行有效法律、法规、规章和技术文件嵌入大语言模型,建立药监领域专用的法律法规智能辅助模型辅助办案人员生成各类办案文书

  • 参照以往相似违法违规行为的处罚信息,对日常监管、行政处罚等业务形成的文书进行智能分析,对涉及自由裁量的处理或处罚决定进行一致性判别提升自由裁量适用的准确性和规范性

  • 智能分析全程执法记录内容,规范执法过程辅助监督执法

B7

15

药物警戒:

  • 通过人工智能技术从“个例安全性报告”中自动提取关键信息实现结构化数据处理,排除重复报告

  • 基于提取信息的内容质量进行自动分级,筛选包含足够信息量、具备评估价值的安全性报告

B7

16

药品网络交易监管:

  • 形成药品网络交易违法违规风险分析模型提供关于重点监管产品、重点监测平台、网络巡检目标等方面的建议协助制定更加精准、高效的网络监管计划及方案

  • 利用人工智能技术提升网络交易监测的覆盖率网络交易巡查的精准度

  • 辅助生成网络销售监管形势分析报告多维度开展数据分析和形势研判,以既往优秀报告为参考模板自动生成报告草稿,并通过监管人员纠偏和修改形成最终分析报告。

  • 辅助网络销售执法,利用大语言模型梳理案件逻辑,提炼关键信息,自动生成有关文书初稿,智能推荐适用的法律法规条文,为案件办理提供参考依据。

B7

17

药品业务办理及政策咨询:

  • 智能咨询,将药品业务数据、相关政策法规嵌入大语言模型,为公众办理业务、信息查询、政策咨询提供及时规范服务。

  • 智能申报,以多轮问答方式代替表单填报等传统申报方式,实现药品企业政务服务事项办理相关信息核对、数据填报、附件上传、附件智能审查、进度查询、电子证照查询等功能,企业在“聊天”模式下快速完成业务申报和查询。

B7

18

说明书适老化改造:

  • 提供说明书内容定制化解读,利用人工智能大语言模型,将药品说明书中专业术语和复杂表述转换为易于理解的语言,或抽取说明书中适合当前用药人的信息开展定制化说明

  • 快速查询说明书中内容,将说明书文本转换为结构化信息,例如成分、用法、副作用等,便于特定信息的快速查询。

  • 辅助获取药品信息,利用人工智能技术可以采用多轮人机语音对话、语音播报、生大字版说明书二维码的形式,辅助老年人获取药品信息。

B7

19

辅助决策类:

  • 药品业务档案或业务数据查询

  • 药监业务数据、医药行业数据和其他相关领域数据分析和预测

  • 工作方案研究

  • 药品风险管理,如风险预警、风险分析

B7

三、现实案例

广东省药品监督管理局网站发布了机器人“小粤”,为公众提供“关键词”智能咨询。

图片

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值