先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:xhs1999xhs (备注Java)
正文
[蓝桥杯真题]:压缩变换
正文
题目描述
小明最近在研究压缩算法。他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比。然而,要使数值很小是一个挑战。
最近,小明需要压缩一些正整数的序列,这些序列的特点是,后面出现的数字很大可能是刚出现过不久的数字。对于这种特殊的序列,小明准备对序列做一个变换来减小数字的值。
变换的过程如下:
从左到右枚举序列,每枚举到一个数字,如果这个数字没有出现过,刚将数字变换成它的相反数,如果数字出现过,则看它在原序列中最后的一次出现后面(且在当前数前面)出现了几种数字,用这个种类数替换原来的数字。
比如,序列(a1, a2, a3, a4, a5)=(1, 2, 2, 1, 2)在变换过程为:
a1: 1未出现过,所以a1变为-1;
a2: 2未出现过,所以a2变为-2;
a3: 2出现过,最后一次为原序列的a2,在a2后、a3前有0种数字,所以a3变为0;
a4: 1出现过,最后一次为原序列的a1,在a1后、a4前有1种数字,所以a4变为1;
a5: 2出现过,最后一次为原序列的a3,在a3后、a5前有1种数字,所以a5变为1。
现在,给出原序列,请问,按这种变换规则变换后的序列是什么。
输入输出
输入格式
输入第一行包含一个整数n,表示序列的长度。第二行包含n个正整数,表示输入序列a。
1 <=n<=100000,1<=ai<=10^9
输出格式
对于每组测试数据,输出一行,包含n个数,表示变换后的序列。
输入样例 复制
5
1 2 2 1 2
输出样例 复制
-1 -2 0 1 1
思路及代码
思路: 只需要再两个相同的数之间做区间处理即可算出结果。注意一定不能用树状数组和差分数组,无法计算出正常结果
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
const ll maxn=1e5+10;
const ll maxm=1e8+10;
const ll mod=1e9+7;
ll n,a[maxn];
struct node{
ll l,r,val;
}tr[maxn\*4];
map<ll,ll> mt;
void pushup(ll st){
tr[st].val=tr[st\*2].val+tr[st\*2+1].val;
}
void build(ll st,ll l,ll r){
tr[st].l=l;
tr[st].r=r;
if(l==r){
tr[st].val=0;
return ;
}
ll mid=(l+r)>>1;
build(st\*2,l,mid);
build(st\*2+1,mid+1,r);
pushup(st);
return ;
}
void update(ll st,ll p,ll val){
if(tr[st].l==tr[st].r&&tr[st].l==p){
tr[st].val+=val;
return ;
}
ll mid=(tr[st].l+tr[st].r)>>1;
if(p<=mid){
update(st\*2,p,val);
}
if(p>mid){
update(st\*2+1,p,val);
}
pushup(st);
return ;
}
ll getsum(ll st,ll l,ll r){
if(tr[st].l>=l&&tr[st].r<=r){
return tr[st].val;
}
ll mid=(tr[st].l+tr[st].r)>>1;
ll ans=0;
if(l<=mid){
ans+=getsum(st\*2,l,r);
}
if(mid<r){
ans+=getsum(st\*2+1,l,r);
}
return ans;
}
int main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
}
build(1,1,n);
for(int i=1;i<=n;i++){
ll t=a[i];
if(!mt[t]){
a[i]=0-a[i];
mt[t]=i;
}else{
ll sum=getsum(1,mt[t]+1,i-1);
update(1,mt[t],-1);
a[i]=sum;
mt[t]=i;
}
update(1,i,1);
}
for(int i=1;i<=n;i++){
printf("%lld ",a[i]);
}
return 0;
}
结语
“遇事不决可问春风,春风不语即随本心”的意思是:对一件事犹豫不决,就问春风该如何做,春风给不出答案,就凭自己本心做出决断。“遇事不决可问春风,春风不语即随本心”一句出自网络作家“烽火戏诸侯”的《剑来》,其原文是:“遇事不决,可问春风。春风不语,遵循己心”。
读者福利
由于篇幅过长,就不展示所有面试题了,感兴趣的小伙伴
更多笔记分享
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:xhs1999xhs(备注Java)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
,不再深入研究,那么很难做到真正的技术提升。**
需要这份系统化的资料的朋友,可以添加V获取:xhs1999xhs(备注Java)
[外链图片转存中…(img-DFoL0VZT-1713697718231)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!