总数1000万个取最大100,最小堆完虐,快排没戏,而且最小堆快了大概2倍。
结论:最小堆比快排优秀。
原因:
1.速度确实快。
2.最小堆不需要打乱原数据顺序,而快排会打乱。(并不是快的原因,而是最小堆的优点)
3.如果内存有限,无法加载所有数据,则最小堆快。
以上数据引用自 topK问题最小堆和快排哪个快。所以偷鸡就可以解决第一层的问题。
public int findKthLargest(int[] nums, int k) {
PriorityQueue queue=new PriorityQueue(k,new Comparator() {
@Override
public int compare(Integer o1, Integer o2) {
return o1.compareTo(o2);
}
});
for(int i=0;i<nums.length;i++){
queue.add(nums[i]);
if(queue.size()>k){
queue.poll();
}
}
return queue.peek();
}
这是我leetcode乱写的第k大个数啊。
面试官对我的偷鸡取巧并不满意啊,他需要我提速,这个速度不行啊。
What??是有时间复杂度更低的吗?不不不,这是一道核心竟然是一道多线程的题目。
-
将10亿的数据分片,通过分治的思维对数据进行第一次处理。
-
开启多线程然后对其进行这些分片的数据进行优先级队列操作。
-
然后每个子线程筛选出其中最大的k个数
-
当所有线程执行完毕之后合并数据
-
是不是考虑下多少个数据一分片,然后如何把效能提升到最高的问题?
-
构建多少个线程读取效率是最高的?
这个都是我没想到的,各位大佬有想法的可以聊一下啊。
============================================================================
这题乍一看卧槽貌似不难,foreach循环碰到一个空格或者标点的情况下sum++,是不是就可以解决这个问题。
然而事情并没有想想的这么简单。面试被问到这种问题最难的是什么,可能是对于这题目真实的边界问题的思考。
-
如果这篇文章内容很大怎么办,会不会把内存吃光?
-
如何给单词去除重复?
将其转化成IO流,逐行读取流,之后对这个输入内容进行一次计数操作,是不是就可以解决这个问题呢。
最后
最后这里放上我这段时间复习的资料,这个资料也是偶然一位朋友分享给我的,里面包含了腾讯、字节跳动、阿里、百度2019-2021面试真题解析,并且把每个技术点整理成了视频和PDF(知识脉络 + 诸多细节)。
还有 高级架构技术进阶脑图、高级进阶架构资料 帮助大家学习提升进阶,也可以分享给身边好友一起学习。
一起互勉~
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618156601)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!