Android最全算法设计与分析期末复习题(史上最详细)(1),安卓资深架构师分享学习经验及总结

最后

都说三年是程序员的一个坎,能否晋升或者提高自己的核心竞争力,这几年就十分关键。

技术发展的这么快,从哪些方面开始学习,才能达到高级工程师水平,最后进阶到Android架构师/技术专家?我总结了这 5大块;

我搜集整理过这几年阿里,以及腾讯,字节跳动,华为,小米等公司的面试题,把面试的要求和技术点梳理成一份大而全的“ Android架构师”面试 Xmind(实际上比预期多花了不少精力),包含知识脉络 + 分支细节。

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。

2021年虽然路途坎坷,都在说Android要没落,但是,不要慌,做自己的计划,学自己的习,竞争无处不在,每个行业都是如此。相信自己,没有做不到的,只有想不到的。祝大家2021年万事大吉。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

一个规模较大的问题,有时是相当困难的。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的

相同问题,以便各个击破,分而治之。

分治法所能解决的问题一般具有以下几个特征:

(1)该问题的规模缩小到一定的程度就可以容易地解决;

3

(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结

构性质;

(3)利用该问题分解出的子问题的解可以合并为该问题的解;

(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共

的子子问题。

3、分治法的基本步骤

分治法在每一层递归上都有三个步骤:

(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同

的子问题;

(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子

问题;

(3)合并:将各个子问题的解合并为原问题的解。

快速排序

在这种方法中, n 个元素被分成三段(组):左段 l e f t,右段 r i g h t 和中段 m i d d l e。中

段仅包含一个元素。左段中各元素都小于等于中段元素,右段中各元素都大于等于中段元素。

因此 l e f t 和 r i g h t 中的元素可以独立排序,并且不必对 l e f t 和 r i g h t 的排序结果进行合

并。m i d d l e 中的元素被称为支点( p i v o t )。图 1 4 - 9 中给出了快速排序的伪代码。

/ /使用快速排序方法对 a[ 0 :n- 1 ]排序

从 a[ 0 :n- 1 ]中选择一个元素作为 m i d d l e,该元素为支点

把余下的元素分割为两段 left 和 r i g h t,使得 l e f t 中的元素都小于等于支点,而 right

中的元素都大于等于支点

递归地使用快速排序方法对 left 进行排序

递归地使用快速排序方法对 right 进行排序

所得结果为 l e f t + m i d d l e + r i g h t

考察元素序列[ 4 , 8 , 3 , 7 , 1 , 5 , 6 , 2 ]。假设选择元素 6 作为支点,则 6 位于 m i d d l e; 4,3,1,5,2 位于 l e f t;8,7 位于 r i g h t。当 left 排好序后,所得结果为 1,2,3,4, 5;当 r i g h t 排好序后,所得结果为 7,8。把 right 中的元素放在支点元素之后, l e f t 中

的元素放在支点元素之前,即可得到最终的结果[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]。

把元素序列划分为 l e f t、m i d d l e 和 r i g h t 可以就地进行(见程序 1 4 - 6)。在程序

1 4 - 6 中,支点总是取位置 1 中的元素。也可以采用其他选择方式来提高排序性能,本章稍

后部分将给出这样一种选择。

程序 14-6 快速排序

template

void QuickSort(T*a, int n)

{// 对 a[0:n-1] 进行快速排序

{// 要求 a[n] 必需有最大关键值

quickSort(a, 0, n-1);

template

void quickSort(T a[], int l, int r)

{// 排序 a [ l : r ], a[r+1] 有大值

if (l >= r) return;

int i = l, // 从左至右的游标

j = r + 1; // 从右到左的游标

T pivot = a[l];

// 把左侧>= pivot 的元素与右侧<=

pivot 的元素进行交换

while (true) {

do {// 在左侧寻找>= pivot 的元素

i = i + 1;

} while (a < pivot);

do {// 在右侧寻找<= pivot 的元素

j = j - 1;

} while (a[j] > pivot);

if (i >= j) break; // 未发现交换对象

4

Swap(a, a[j]);

}

// 设置 p i v o t

a[l] = a[j];

a[j] = pivot;

quickSort(a, l, j-1); // 对左段排序

quickSort(a, j+1, r); // 对右段排序

}

贪婪法

它采用逐步构造最优解的思想,在问题求解的每一个阶段,都作出一个在一 定标准下看上

去最优的决策;决策一旦作出,就不可再更改。制定决策的依据称为贪婪准则。

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到

满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当

前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。

【问题】 背包问题

问题描述:有不同价值、不同重量的物品 n 件,求从这 n 件物品中选取一部分物品的选择方案,使

选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。

#include<stdio.h>

void main()

{

int

m,n,i,j,w[50],p[50],pl[50],b[50],s=0,max;

printf(“输入背包容量 m,物品种类 n :”);

scanf(“%d %d”,&m,&n);

for(i=1;i<=n;i=i+1)

{

printf(“输入物品的重量 W 和价值

P :”);

scanf(“%d %d”,&w[i],&p[i]);

pl[i]=p[i];

s=s+w[i];

}

if(s<=m)

{

printf(“whole choose\n”);

//return;

}

for(i=1;i<=n;i=i+1)

{

max=1;

for(j=2;j<=n;j=j+1)

if(pl[j]/w[j]>pl[max]/w[max])

max=j;

pl[max]=0;

b[i]=max;

}

for(i=1,s=0;s<m && i<=n;i=i+1)

s=s+w[b[i]];

if(s!=m)

w[b[i-1]]=m-w[b[i-1]];

for(j=1;j<=i-1;j=j+1)

printf(“choose weight %d\n”,w[b[j]]);

}动态规划的基本思想

前文主要介绍了动态规划的一些理论依据,我们将前文所说的具有明显的阶段划分和状态转

移方程的动态规划称为标准动态规划,这种标准动态规划是在研究多阶段决策问题时推导出

来的,具有严格的数学形式,适合用于理论上的分析。在实际应用中,许多问题的阶段划分

并不明显,这时如果刻意地划分阶段法反而麻烦。一般来说,只要该问题可以划分成规模更

小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可

以考虑用动态规划解决。

5

动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、

相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。

由此可知,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的

子问题,并通过求解子问题产生一个全局最优解。

贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问

题。因此贪心法自顶向下,一步一步地作出贪心选择;

而分治法中的各个子问题是独立的(即不包含公共的子问题),因此一旦递归地求出各子问

题的解后,便可自下而上地将子问题的解合并成问题的解。

不足之处:如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最

优解;如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。

解决上述问题的办法是利用动态规划。该方法主要应用于最优化问题,这类问题会有多种可

能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。若存在若干

个取最优值的解的话,它只取其中的一个。在求解过程中,该方法也是通过求解局部子问题

的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦

即各子问题可包含公共的子问题)也允许其通过自身子问题的解作出选择,该方法对每一个

子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。

因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现

大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求

解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。

3、动态规划算法的基本步骤

设计一个标准的动态规划算法,通常可按以下几个步骤进行:

(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。注意这若干个阶段

一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。

(2)选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。

当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:之所以把这两步放在一起,是因为决策和状态转移有

着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以,如果

我们确定了决策,状态转移方程也就写出来了。但事实上,我们常常是反过来做,根据相邻

两段的各状态之间的关系来确定决策。

(4)写出规划方程(包括边界条件):动态规划的基本方程是规划方程的通用形式化表达式。

一般说来,只要阶段、状态、决策和状态转移确定了,这一步还是比较简单的。动态规划的

主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。根据动态规划的基本

方程可以直接递归计算最优值,但是一般将其改为递推计算,实现的大体上的框架如下:

标准动态规划的基本框架

  1. 对fn+1(xn+1)初始化; {边界条件}

for k:=n downto 1 do

for 每一个xk∈Xk do

for 每一个uk∈Uk(xk) do

begin

fk(xk):=一个极值; {∞或-∞} xk+1:=Tk(xk,uk); {状态转移方程}

t:=φ(fk+1(xk+1),vk(xk,uk)); {基本方程(9)式}

if t比fk(xk)更优 then fk(xk):=t; {计算fk(xk)的最优值}

end;

6

t:=一个极值; {∞或-∞}

for 每一个x1∈X1 do

if f1(x1)比t更优 then t:=f1(x1); {按照 10 式求出最优指标}

输出 t;

但是,实际应用当中经常不显式地按照上面步骤设计动态规划,而是按以下几个步骤进行:

(1)分析最优解的性质,并刻划其结构特征。

(2)递归地定义最优值。

(3)以自底向上的方式或自顶向下的记忆化方法(备忘录法)计算出最优值。

(4)根据计算最优值时得到的信息,构造一个最优解。

步骤(1)~(3)是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤(4)可

以省略,若需要求出问题的一个最优解,则必须执行步骤(4)。此时,在步骤(3)中计算

最优值时,通常需记录更多的信息,以便在步骤(4)中,根据所记录的信息,快速地构造

出一个最优解。

总结:动态规划实际上就是最优化的问题,是指将原问题的大实例等价于同一最优化问题的

较小实例,自底向上的求解最小实例,并将所求解存放起来,存放的结果就是为了准备数据。

与递归相比,递归是不断的调用子程序求解,是自顶向下的调用和求解。

回溯法

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选

解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘

若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的

规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问

题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前

候选解的规模,以继续试探的过程称为向前试探。

1、回溯法的一般描述

可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的

一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个

分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义

域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P

的一个解。

解问题 P 的最朴素的方法就是枚举法,即对 E 中的所有 n 元组逐一地检测其是否满足 D 的

全部约束,若满足,则为问题 P 的一个解。但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足

D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<i)元组(x1,x2,…,xj)一定也满足

D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在 0≤j≤n-1,

使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,

xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,

xi的一个约束,n≥i>j。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1, x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)

为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去

搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚

举法效率更高的算法。

回溯法首先将问题 P 的 n 元组的状态空间 E 表示成一棵高为 n 的带权有序树 T,把在 E 中

求问题 P 的所有解转化为在 T 中搜索问题 P 的所有解。树 T 类似于检索树,它可以这样构

7

造:

设Si中的元素可排成xi

(1) ,xi

(2) ,…,xi

(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,

让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次

序,分别带权xi+1

(1) ,xi+1

(2) ,…,xi+1

(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的

一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上

依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的 0≤i≤n-1,E中n

元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,

T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,

E中的任意一个n元组的空前缀(),对应于T的根。

因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶

子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T

中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即

依次搜索满足约束条件的前缀 1 元组(x1i)、前缀 2 元组(x1,x2)、…,前缀I元组(x1, x2,…,xi),…,直到i=n为止。

在回溯法中,上述引入的树被称为问题 P 的状态空间树;树 T 上任意一个结点被称为问

题 P 的状态结点;树 T 上的任意一个叶子结点被称为问题 P 的一个解状态结点;树 T 上满

足约束集 D 的全部约束的任意一个叶子结点被称为问题 P 的一个回答状态结点,它对应于

问题 P 的一个解。

【问题】 n 皇后问题

问题描述:求出在一个 n×n 的棋盘上,放置 n 个不能互相捕捉的国际象棋“皇后”

的所有布局。

这是来源于国际象棋的一个问题。皇后可以沿着纵横和两条斜线 4 个方向相互捕捉。

如图所示,一个皇后放在棋盘的第 4 行第 3 列位置上,则棋盘上凡打“×”的位置上的皇后

就能与这个皇后相互捕捉。

1 2 3 4 5 6 7 8

× ×

× × ×

× × ×

× × Q × × × × ×

× × ×

× × ×

× ×

× ×

从图中可以得到以下启示:一个合适的解应是在每列、每行上只有一个皇后,且一条

斜线上也只有一个皇后。

求解过程从空配置开始。在第 1 列至第 m 列为合理配置的基础上,再配置第 m+1 列,

直至第 n 列配置也是合理时,就找到了一个解。接着改变第 n 列配置,希望获得下一个解。

另外,在任一列上,可能有 n 种配置。开始时配置在第 1 行,以后改变时,顺次选择第 2

行、第 3 行、…、直到第 n 行。当第 n 行配置也找不到一个合理的配置时,就要回溯,去改

变前一列的配置。得到求解皇后问题的算法如下:

8

{ 输入棋盘大小值 n;

m=0;

good=1;

do {

if (good)

if (m==n)

{ 输出解;

改变之,形成下一个候选解;

}

else 扩展当前候选接至下一列;

else 改变之,形成下一个候选解;

good=检查当前候选解的合理性;

} while (m!=0);

}

在编写程序之前,先确定边式棋盘的数据结构。比较直观的方法是采用一个二维数组,

但仔细观察就会发现,这种表示方法给调整候选解及检查其合理性带来困难。更好的方法乃

是尽可能直接表示那些常用的信息。对于本题来说,“常用信息”并不是皇后的具体位置,

而是“一个皇后是否已经在某行和某条斜线合理地安置好了”。因在某一列上恰好放一个皇

后,引入一个一维数组(col[

]),值 col[i]表示在棋盘第 i 列、col[i]行有一个皇后。例如:col[3]=4,就表示在棋盘

的第 3 列、第 4 行上有一个皇后。另外,为了使程序在找完了全部解后回溯到最初位置,设

定 col[0]的初值为 0 当回溯到第 0 列时,说明程序已求得全部解,结束程序运行。

为使程序在检查皇后配置的合理性方面简易方便,引入以下三个工作数组:

(1) 数组 a[ ],a[k]表示第 k 行上还没有皇后;

(2) 数组 b[ ],b[k]表示第 k 列右高左低斜线上没有皇后;

(3) 数组 c[ ],c[k]表示第 k 列左高右低斜线上没有皇后;

棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一左高右低斜线

上的方格,他们的行号与列号之差均相同。

初始时,所有行和斜线上均没有皇后,从第 1 列的第 1 行配置第一个皇后开始,在第

m 列 col[m]行放置了一个合理的皇后后,准备考察第 m+1 列时,在数组 a[

]、b[ ]和 c[ ]中为第 m 列,col[m]行的位置设定有皇后标志;当从第 m 列回溯到第

m-1 列,并准备调整第 m-1 列的皇后配置时,清除在数组 a[

]、b[ ]和 c[ ]中设置的关于第 m-1 列,col[m-1]行有皇后的标志。一个皇后在 m 列,

col[m]行方格内配置是合理的,由数组 a[ ]、b[ ]和 c[ ]对应位置的值都为 1 来确定。细节见

以下程序:

【程序】

include

==========================================================================

include

==========================================================================

define MAXN 20

=================================================================================

int n,m,good;

9

int col[MAXN+1],a[MAXN+1],b[2_MAXN+1],c[2_MAXN+1];

void main()

{ int j;

char awn;

printf(“Enter n: “); scanf(“%d”,&n);

for (j=0;j<=n;j++) a[j]=1;

for (j=0;j<=2*n;j++) cb[j]=c[j]=1;

m=1; col[1]=1; good=1; col[0]=0;

do {

if (good)

if (mn)

{ printf(“列\t 行”);

for (j=1;j<=n;j++)

printf(“%3d\t%d\n”,j,col[j]);

printf(“Enter a character (Q/q for exit)!\n”);

scanf(“%c”,&awn);

if (awn’Q’||awn==’q’) exit(0);

while (col[m]==n)

{ m–;

a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;

}

col[m]++;

}

else

{ a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=0;

col[++m]=1;

}

else

{ while (col[m]==n)

{ m–;

a[col[m]]=b[m+col[m]]=c[n+m-col[m]]=1;

}

col[m]++;

}

good=a[col[m]]&&b[m+col[m]]&&c[n+m-col[m]];

} while (m!=0);

}

试探法找解算法也常常被编写成递归函数,下面两程序中的函数 queen_all()和函数

queen_one()能分别用来解皇后问题的全部解和一个解。

【程序】

include

==========================================================================

include

==========================================================================

10

define MAXN 20

=================================================================================

int n;

int col[MAXN+1],a[MAXN+1],b[2_MAXN+1],c[2_MAXN+1];

void main()

{ int j;

printf(“Enter n: “); scanf(“%d”,&n);

for (j=0;j<=n;j++) a[j]=1;

for (j=0;j<=2*n;j++) cb[j]=c[j]=1;

queen_all(1,n);

}

void queen_all(int k,int n)

{ int i,j;

char awn;

for (i=1;i<=n;i++)

if (a[i]&&b[k+i]&&c[n+k-i])

{ col[k]=i;

a[i]=b[k+i]=c[n+k-i]=0;

if (kn)

{ printf(“列\t 行”);

for (j=1;j<=n;j++)

printf(“%3d\t%d\n”,j,col[j]);

printf(“Enter a character (Q/q for exit)!\n”);

scanf(“%c”,&awn);

if (awn’Q’||awn==’q’) exit(0);

}

queen_all(k+1,n);

a[i]=b[k+i]=c[n+k-i];

}

}

采用递归方法找一个解与找全部解稍有不同,在找一个解的算法中,递归算法要对当

前候选解最终是否能成为解要有回答。当它成为最终解时,递归函数就不再递归试探,立即

返回;若不能成为解,就得继续试探。设函数 queen_one()返回 1 表示找到解,返回 0 表示

当前候选解不能成为解。细节见以下函数。

【程序】

define MAXN 20

=================================================================================

int n;

int col[MAXN+1],a[MAXN+1],b[2_MAXN+1],c[2_MAXN+1];

int queen_one(int k,int n)

{ int i,found;

i=found=0;

While (!found&&i { i++;

11

if (a[i]&&b[k+i]&&c[n+k-i])

{ col[k]=i;

a[i]=b[k+i]=c[n+k-i]=0;

if (k==n) return 1;

else

found=queen_one(k+1,n);

a[i]=b[k+i]=c[n+k-i]=1;

}

}

return found;

}

分支定界法:

分支限界法:

这是一种用于求解组合优化问题的排除非解的搜索算法。类似于回溯法,分枝定界法在搜索

解空间时,也经常使用树形结构来组织解空间。然而与回溯法不同的是,回溯算法使用深度

优先方法搜索树结构,而分枝定界一般用宽度优先或最小耗费方法来搜索这些树。因此,可

以很容易比较回溯法与分枝定界法的异同。相对而言,分枝定界算法的解空间比回溯法大得

多,因此当内存容量有限时,回溯法成功的可能性更大。

算法思想:分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法

的主要区别在于对 E-节点的扩充方式。每个活节点有且仅有一次机会变成 E-节点。当一个

节点变为 E-节点时,则生成从该节点移动一步即可到达的所有新节点。在生成的节点中,

抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个

节点作为下一个 E-节点。从活节点表中取出所选择的节点并进行扩充,直到找到解或活动

表为空,扩充过程才结束。

有两种常用的方法可用来选择下一个 E-节点(虽然也可能存在其他的方法):

  1. 先进先出(F I F O) 即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活

节点表的性质与队列相同。

  1. 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。如果查找

一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个 E-节点就是具有最小耗费

的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个

E-节点是具有最大收益的活节点

装载问题

用一个队列 Q 来存放活结点表,Q 中 weight

表示每个活结点所相应的当前载重量。当

weight=-1 时,表示队列已达到解空间树

同一层结点的尾部。

算法首先检测当前扩展结点的左儿子结

点是否为可行结点。如果是则将其加入到活

结点队列中。然后将其右儿子结点加入到活

结点队列中(右儿子结点一定是可行结点)。2

个儿子结点都产生后,当前扩展结点被舍

弃。

活结点队列中的队首元素被取出作为

当前扩展结点,由于队列中每一层结点之后

都有一个尾部标记-1,故在取队首元素时,

活结点队列一定不空。当取出的元素是-1

时,再判断当前队列是否为空。如果队列非

空,则将尾部标记-1 加入活结点队列,算法

开始处理下一层的活结点。

/该版本只算出最优解/

#include<stdio.h>

#include<malloc.h>

struct Queue{

int weight ;

12

struct Queue* next ;

};

int bestw = 0 ; // 目前的最优值

Queue* Q; // 活结点队列

Queue* lq = NULL ;

Queue* fq = NULL ;

int Add(int w)

{

Queue* q ;

q = (Queue*)malloc(sizeof(Queue)) ;

if(q NULL)

{

printf(“没有足够的空间分配\n”) ;

return 1 ;

}q->next = NULL ;

q->weight = w ;

if(Q->next == NULL)

{ Q->next = q ;

fq = lq = Q->next ; //一定要使元素放到链

中}

else

{

lq->next = q ;

lq = q ;

// lq = q->next ;

}

return 0 ;

}

int IsEmpty()

{

if(Q->nextNULL)

return 1 ;

return 0 ;

}

int Delete(int&w)

{

Queue* tmp = NULL ;

// fq = Q->next ;

tmp = fq ;

w = fq->weight ;

Q->next = fq->next ; /_一定不能丢了链表头

_/

fq = fq->next ;

free(tmp) ;

return 0 ;

}

void EnQueue(int wt,

int& bestw, int i, int n) //该函数负责加入

活结点

{ // 如果不是叶结点,则将结点权值 wt 加

入队列 Q

if (i == n)

{ // 叶子

if (wt>bestw)

bestw = wt;

}

else

Add(wt); // 不是叶子

}

int MaxLoading(int w[], int c, int n)

{ // 返回最优装载值

// 为层次 1 初始化

int err ; //返回值

int i = 1; // 当前扩展结点的层

int Ew = 0; // 当前扩展结点的权值

bestw = 0; // 目前的最优值

Q = (Queue_)malloc(sizeof(Queue)) ;

Q->next = NULL ;

Q->weight = -1 ;

err = Add(-1) ; //标记本层的尾部

if(err)

{

return 0 ;

}

while (true)

{

// 检查左孩子结点

if (Ew + w[i] <= c) // x[i] = 1

EnQueue(Ew + w[i], bestw , i, n);

// 右孩子总是可行的

EnQueue(Ew, bestw, i, n); // x[i] = 0

Delete(Ew); // 取下一个扩展结点

if (Ew == -1)

{ // 到达层的尾部

13

if (IsEmpty())

return bestw;

if(i<n)

Add(-1); // 同层结点的尾部

Delete(Ew); // 取下一扩展结点

i++; // 进入下一层

}

}}

int main()

{

int n =0 ;

int c = 0 ;

int i = 0 ;

int_ w ;

FILE _in , _out ;

in = fopen(“input.txt” , “r”) ;

out = fopen(“output.txt” , “w”) ;

if(inNULL||outNULL){

printf(“没有输入输出文件\n”) ;

return 1 ;

}

fscanf(in , “%d” , &n) ;

fscanf(in , “%d” , &c) ;

w = (int_)malloc(sizeof(int)_(n+1)) ;

for(i =1 ; i<=n ; i++)

fscanf(in , “%d” , &w[i]) ;

MaxLoading(w , c , n) ;

fprintf(out , “%d\n” , bestw) ;

return 0 ;

}

算法设计与分析期末复习题(四)答案在下面

一.填空题(每空2分,共30分)

1.算法的时间复杂性指算法中 的执行次数。

2.在忽略常数因子的情况下,O、和三个符号中, 提供了算法运行时间的一个上界。

3.设Dn表示大小为n的输入集合,t(I)表示输入为I时算法的运算时间, p(I)表示输入I出现的概率,则算法的平均情况下时间复杂性A(n)= 。

4.分治算法的时间复杂性常常满足如下形式的递归方程:

其中,g(n)表示 。

  1. 分治算法的基本步骤包括 。

6.回溯算法的基本思想是 。

7.动态规划和分治法在分解子问题方面的不同点是 。

8.贪心算法中每次做出的贪心选择都是 最优选择。

9.PQ式的分支限界法中,对于活结点表中的结点,其下界函数值越小,优先级越 。

10.选择排序、插入排序和归并排序算法中, 算法是分治算法。

11.随机算法的一个基本特征是对于同一组输入, 不同的运行可能得到 的结果。

12.对于下面的确定性快速排序算法,只要在步骤3前加入随机化步骤 ,就可得到一个随机化快速排序算法,该随机化步骤的功能是 。

算法 QUICKSORT

输入:n个元素的数组A[1…n]。

输出:按非降序排列的数组A中的元素。

  1. quicksort(1, n)

end QUICKSORT

过程 quicksort(A, low, high)

// 对A[low…high]中的元素按非降序排序。

  1. if low<high then

  2. w=SPLIT(A, low, high)

//算法SPLIT以A[low]为主元将A[low…high]划分成两部 //分,返回主元的新位置。

  1. quicksort (A, low, w-1)

  2. quicksort (A, w+1, high)

6. end if

end quicksort

13.下面算法的基本运算是 运算,该算法的时间复杂性阶为( )。

算法 SPLIT

输入:正整数n,数组A[1…n]。

输出:…。

i=1

x=A[1]

for j=2 to n

if A[j]<=x then

i=i+1

if ij then A[i]A[j]

end if

end for

A[i]A[1]

w =i

return w, A

end SPLIT

二.计算题和简答题(每小题7分,共21分)

1.用O、、表示函数f与g之间阶的关系,并分别指出下列函数中阶最低和最高的函数:

(1) f (n)=100 g(n)=

(2) f(n)=6n+n g(n)=3n

(3) f(n)= n/logn-1 g(n)=

(4) f(n)= g(n)=

(5) f(n)= g(n)=

2.下面是一个递归算法,其中,过程pro1和pro2的运算时间分别是1和。给出该算法的时间复杂性T(n)满足的递归方程,并求解该递归方程,估计T(n)的阶(用表示)。

算法 EX1

输入:正整数n,n=2k。

输出:…

ex1(n)

end EX1

过程 ex1(n)

if n=1 then

pro1(n)

else

pro2(n)

ex1(n/2)

end if

return

end ex1

3.用Floyd算法求下图每一对顶点之间的最短路径长度,计算矩阵D0,D1,D2和D3,其中Dk[i, j]表示从顶点i到顶点j的不经过编号大于k的顶点的最短路径长度。

三.算法填空题(共34分)

1.(10分)设n个不同的整数按升序存于数组A[1…n]中,求使得A[i]=i的下标i 。下面是求解该问题的分治算法。

算法 SEARCH

输入:正整数n,存储n个按升序排列的不同整数的数组A[1…n]。

输出:A[1…n]中使得A[i]=i的一个下标i,若不存在,则输出 no solution。

i=find ( (1) )

if i>0 then output i

else output “no solution”

end SEARCH

过程 find (low, high)

// 求A[low…high] 中使得A[i]=i的一个下标并返回,若不存在,//则返回0。

if (2) then return 0

else

mid=

if (3) then return mid

else

if A[mid]<mid then

return find( (4) )

else

return (5)

end if

end if

end if

end find

2.(10分) 下面是求解矩阵链乘问题的动态规划算法。

矩阵链乘问题:给出n个矩阵M1, M2, …, Mn , Mi 为riri+1阶矩阵,i=1, 2, …, n,求计算M1M2…Mn所需的最少数量乘法次数。

记 Mi, j=MiMi+1…Mj , i<=j。设C[i, j], 1<=i<=j<=n, 表示计算Mi, j的所需的最少数量乘法次数,则

算法 MATCHAIN

输入:矩阵链长度n, n个矩阵的阶r[1…n+1], 其中r[1…n]为n个矩阵的行数,r[n+1]为第n个矩阵的列数。

输出:n个矩阵链乘所需的数量乘法的最少次数。

for i=1 to n C[i, i]= (1)

for d=1 to n-1

for i=1 to n-d

j= (2)

C[i, j]= ∞

for k=i+1 to j

x= (3)

if x<C[i, j] then

(4) =x

end if

end for

end for

end for

return (5)

end MATCHAIN

3.(14分) 下面是用回溯法求解马的周游问题的算法。

马的周游问题:给出一个nxn棋盘,已知一个中国象棋马在棋盘上的某个起点位置(x0, y0),求一条访问每个棋盘格点恰好一次,最后回到起点的周游路线。(设马走日字。)

算法 HORSETRAVEL

输入:正整数n,马的起点位置(x0, y0),1<=x0, y0<=n 。

输出:一条从起点始访问nxn棋盘每个格点恰好一次,最后回到起点的周游路线;若问题无解,则输出no solution。

tag[1…n, 1…n]=0

dx[1…8]={2, 1, -1, -2, -2, -1, 1, 2}

dy[1…8]={1, 2, 2, 1, -1, -2, -2, -1}

flag=false

x=x0; y=y0 ; tag[x, y]=1

m=n*n

i=1; k[i]=0

while (1) and not flag

while k[i]<8 and not flag

k[i]= (2)

x1= x+dx[k[i]]; y1= y+dy[k[i]]

if ((x1,y1)无越界and tag[x1, y1]=0) or ((x1,y1)=(x0,y0) and i=m) then

x=x1; y=y1

tag[x, y]= (3)

if i=m then flag=true

else

i= (4)

(5)

end if

end if

end while

i=i-1

(6)

(7)

end while

if flag then outputroute(k) //输出路径

else output “no solution”

end HORSETRAVEL

四.算法设计题(15分)

10. 一个旅行者要驾车从A地到B地,A、B两地间距离为s。A、B两地之间有n个加油站,已知第i个加油站离起点A的距离为公里,0=,车加满油后可行驶m公里,出发之前汽车油箱为空。应如何加油使得从A地到B地沿途加油次数最少?给出用贪心法求解该最优化问题的贪心选择策略,写出求该最优化问题的最优值和最优解的贪心算法,并分析算法的时间复杂性。

《算法设计与分析》期考试卷(A)标准答案

一.填空题:

  1. 元运算

  2. O

  3. 将规模为n的问题分解为子问题以及组合相应的子问题的解所需的时间

  4. 分解,递归,组合

  5. 在问题的状态空间树上作带剪枝的DFS搜索(或:DFS+剪枝)

  6. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的

  7. 局部

  8. 归并排序算法

  9. 不同

  10. v=random (low, high); 交换A[low]和A[v]的值

随机选主元

  1. 比较

n

二.计算题和简答题:

  1. 阶的关系:

(1) f(n)= O(g(n))

(2) f(n)=(g(n))

(3) f(n)=(g(n))

(4) f(n)= O(g(n))

(5) f(n)=(g(n))

阶最低的函数是:100

阶最高的函数是:

  1. 该递归算法的时间复杂性T(n)满足下列递归方程:

将n=, a=1, c=2, g(n)=, d=1代入该类递归方程解的一般形式得:

T(n)=1+=1+k-

=1+ k-=++1

所以,T(n)= ++1=。

三.算法填空题:

1.(1) 1, n (2) low>high (3) A[mid]=mid

(4) mid+1, high (5) find(low, mid-1)

2. (1) 0 (2) i+d (3) C[i, k-1]+C[k, j]+r[i]*r[k]*r[j+1]

(4) C[i, j] (5) C[1, n]

3. (1) i>=1 (2)k[i]+1 (3) 1

(4) i+1 (5) k[i]=0 (6) tag[x, y]=0

(7) x=x-dx[k[i]]; y=y-dy[k[i]]

四.算法设计题:

  1. 贪心选择策略:从起点的加油站起每次加满油后不加油行驶尽可能远,直至油箱中的油耗尽前所能到达的最远的油站为止,在该油站再加满油。

算法 MINSTOPS

输入:A、B两地间的距离s,A、B两地间的加油站数n,车加满油后可行驶的公里数m,存储各加油站离起点A的距离的数组d[1…n]。

输出:从A地到B地的最少加油次数k以及最优解x[1…k](x[i]表示第i次加油的加油站序号),若问题无解,则输出no solution。

d[n+1]=s; //设置虚拟加油站第n+1站。

for i=1 to n

if d[i+1]-d[i]>m then

output “no solution”; return //无解,返回

end if

end for

k=1; x[k]=1 //在第1站加满油。

s1=m //s1为用汽车的当前油量可行驶至的地点与A点的距离

i=2

while s1<s

if d[i+1]>s1 then //以汽车的当前油量无法到达第i+1站。

k=k+1; x[k]=i //在第i站加满油。

s1=d[i]+m //刷新s1的值

end if

i=i+1

end while

output k, x[1…k]

MINSTOPS

最坏情况下的时间复杂性:Θ(n)

算法设计与分析期末复习题(五)

一、选择题

1.一个.java文件中可以有( )个public类。

A.一个 B.两个 C.多个 D.零个

2.一个算法应该是( )

A.程序 B.问题求解步骤的描述

C.要满足五个基本特性 D.A和C

3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的( )

A.唯一性 B.有穷性 C.有0个或多个输入 D.有输出

4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是( )

A.3,15,130,20,98,67 B.3,15,20,130,98,67

C.3,15,20,67,130,98 D.3,15,20,67,98,130

5.下列关于算法的描述,正确的是( )

A.一个算法的执行步骤可以是无限的 B.一个完整的算法必须有输出

C.算法只能用流程图表示 D.一个完整的算法至少有一个输入

6.Java Application源程序的主类是指包含有( )方法的类。

A、main方法 B、toString方法 C、init方法 D、actionPerfromed方法

7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是( )

A.分治法 B.减治法 C.蛮力法 D.变治法

8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。

A、import java.awt.* ; B、import java.applet.Applet ;

C、import java.io.* ; D、import java.awt.Graphics ;

9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

图中空白处理框①和②处应填入的是( )

A.① sum ← sum + d B.① sum ← sum + c

② c ← c + 1 ② c ← c + 1

C.① sum ← sum + d D.① sum ← sum + c

② d ← d + 1 ② d ← d + 1

10.报名参加冬季越野赛跑的某班5位学生的学号是:5,8,11,33,45。利用折半查找,查找学号为33号学生的过程中,依次被访问到的学号是( )

A.5,11,33 B.8,33 C.11,45,33 D.11,33

11.表达式(short)8/9.2*5的值的类型为

A.short B. int C.double D.float

12. 设x为int型变量,则执行一下语句段后,x的值为

x=10;

x+=x-=x-x;

A.10 B.20 C.40 D.30

13.下列代码的执行结果是

public class StringTest{

public static void main(String args[]){

int a=4,b=6,c=8;

String s=”abc”;

System.out.println(a+b+s+c);

System.out.printin(); }

}

A.ababcc B.464688 C.46abc8 D.10abc8

14. 下列程序段执行后t3的结果是

int t1 = 2, t2 = 3, t3;

t3=t1<t2? t1:t2+t1

A.2 B.4 C.5 D.6

15.要计算当0〈x〈10时,y=x,应当使用的语句是

A.if(0<x<10)y=x; B.if(0<x|x<10)y=x; C.if(0<x&x<10)y=x; D.if(0<x^x<10)y=x;

16.对一组数据(2,12,16,88,5,10)进行排序,若前三趟排序结果如下,

第一趟:2,12,16,88,5,10

第二趟:2,5,16,88,12,10

第三趟:2,5,10,88,12,16

则采用的排序方法是( )

A.冒泡排序 B.合并排序 C.快速排序 D.选择排序

17.类与对象的关系是( )

A. 建筑图纸和建筑物的关系 B. 汽车与发动机的关系

C. 人与黑人的关系 D. 没有关系

18.JAVA语言二维数组定义中,第二维的长度 ( )

A.可以不相等 B.必须相等

C.高维数组长度与低维数组长度相同 D.固定长度

19.算法必须具备( )这三个特性。

A.可执行性、可移植性、可扩充性 B.可执行性、确定性、有穷性

C.确定性、有穷性、稳定性 D.易读性、稳定性、安全性

20.如下图所示,该流程图所表示的算法违背了算法的有穷性特征,下列修改方法中,可以改正该错误的是( )

A.将①处改为 i ← 0 B.将②处改为 s ≥ 0 ?

C.将③处改为 i ← i-2 D.将④处改为 s ← s-i

二、填空题

1.一个显而易见的事实是:大部分算法的执行时间随着 输入量的增加 而增大。

2.算法是 求解某一问题所使用的一系列清晰的指令 。

3.算法分析时间效率模型的基本数学公式是: T(n) ≈ CopC(n) 。

4.算法设计技术是 用算法解题的一般性方法 ,用于解决不同计算领域的多种问题。

5.三个渐进符号: O 、 Ω 和 Ө 。

6.效率分析框架主要关心一个算法的 基本操作次数的增长次数 ,并把它作为算法效率的主要指标。

7.Java源程序的文件名和程序中定义的 主类名 应保持一致,包括字母大小写的匹配。

8.算法中常见的问题类型包括: 排序 、 查找 、字符串处理和组合问题等。

9.类中的 构造 方法是一个特殊的方法,其名称与类名相同。

10.面向对象程序设计语言中的3个重要特性分别是 封装 、 继承 和 多态 。

11.Java源程序文件的扩展名为 java ,编译生成的字节码文件的扩展名为 class 。

12.大多数算法的效率可以分为常数、 对数 、线性、平方、 立方 和指数等。

三、简答题

1.什么是算法?算法的五个重要特征是什么?

答:算法是求解某一问题所使用的一系列清晰的指令。

答:

(1)输入:有零个或多个由外部提供的量作为算法的输入.

(2)输出:算法产生至少一个量作为输出.

(3)确定性:组成算法的每条指令是清晰的,无歧义的.

(4)有限性:在执行了有穷步骤后运算终止.

(5)可行性:运算都是基本运算,原理上能在有限时间内完成.

2.请简述蛮力算法的优点?

答:

蛮力算法是一种简单直接地解决问题的方法。蛮力法具有如下优点:(1)应用范围广;(2)不受实例规模的限制;(3)当要解决的问题实例不多,设计更高效算法的代价太大时可选用;(4)对解决一些小规模的问题实例仍然有效;(5)可作为衡量其他算法的参照物。

3.算法设计与分析过程的典型步骤都包括哪些?

答:

(1)了解问题的内容

(2)了解计算设备的性能

(3)在精确解法和近似解法之间选择

(4)确定适当的数据结构

(5)算法设计技术

(6)详细表述算法的方法

(7)证明算法的正确性

(8)分析算法

(9)为算法写代码

4.请简述分治法的基本思路?

答:

将规模为N的问题分解为k个规模较小的子问题,使这些子问题相互独立可分别求解,再将k个子问题的解合并成原问题的解。如子问题的规模仍很大,则反复分解直到问题小到可直接求解为止。

在分治法中,子问题的解法通常与原问题相同,自然导致递归过程。

5.请简述减治法的基本思路?

答:

减治技术利用了一个问题给定实例的解和同样问题较小实例的解之间的某种关系。一旦建立了这种关系,既可以从顶至底(递归地),也可以从底至顶(非递归地)来运用该关系。

减治法有三种主要的变种:

减常数(如1)::每此迭代规模减小n→n-1

减因子(如1/2):每此迭代规模减半n→ n/2

减可变规模:每此迭代减小的规模不同

6.请简述递归算法设计的基本思路?

答:

递归的执行过程由分解过程和求值过程两部分构成。

实际上, 递归思路是把一个不能或不好直接求解的“大问题”转化成一个或几个“小问题”来解决,再把这些“小问题”进一步分解成更小的“小问题”来解决,如此分解,直至每个“小问题”都可以直接解决(此时分解到递归出口)。

但递归分解不是随意的分解,递归分解要保证“大问题”与“小问题”相似,即求解过程与环境都相似。并且有一个分解的终点。从而使问题可解。

7.请简述变治法的基本思路?

答:

变治法的技术基于变换思想。变治法分为两个阶段的工作:首先在“变”的阶段,出于这样或那样的原因,将问题的实例变得更容易求解;然后是“治”的阶段,对问题的实例进行求解。

根据对问题实例的变换方式不同,变治法有三种主要的类型:

(1)实例化简——变换为同样问题的一个更简单或者更方便的实例;

(2)改变表现——变换为同样实力的不同表现;

(3)问题化简——变换为另一个问题的实例,这种问题的算法是已知的。

8.请简述时空权衡法的基本思路?

答:

时空权衡法的基本思路是对问题的部分或全部输入做预处理,然后对得到的额外信息使用额外的存储空间来存储。通过实现更快或更方便的数据存取,以加速后面问题的求解来提高算法的效率。

四、算法实现题

1.对于任意非负整数n,计算阶乘函数F(n) = n!的值。因为当n ≥ 1时,n!= 1×2×3×……×(n-1)×n = (n-1)!×n。并且根据定义,0!= 1,所以可以使用下面的递归算法计算n!:F(n) = F(n-1) × n。

请编写Java应用程序,由键盘输入n的值,在屏幕上输出计算的n!的结果。

import java.io.*;

public class FN

{

static long f(int n)

{

long r = 1;

if(n != 0)

r = n * f(n-1);

return r;

}

public static void main(String args[]) throws IOException

{

//输入N的值

byte[] buf = new byte[10];

System.out.println(“请输入一个整数:”);

System.in.read(buf);

String str=new String(buf);

int n=Integer.parseInt(str.trim());

//计算N!的值

long result = f(n);

//输出结果

System.out.println(n + “!=” + result);

}

}

2.斐波那契数列:0,1,1,2,3,5,8,13,21,34,……

这个数列可以用一个简单的递推式和两个初始条件来定义:

当n > 1时,F(n) = F(n-1) + F(n-2)

F(0) = 0,F(1) = 1

请编写Java应用程序,由键盘输入n的值代表要生成斐波那契数列的项数,在屏幕上输出n项斐波那契数列。

import java.io.*;

public class Fb{

/斐波那契数列算法/

int f(int n){

int r;

if(n <= 1)

r = n;

else

r = f(n-1) + f(n-2);

return r;

}

public static void main(String args[]) throws IOException{

System.out.println(“请输入所求斐波那契数列的项数:”);

byte buf[] = new byte[20];

System.in.read(buf);

String t1 = new String(buf);

int n = Integer.parseInt(t1.trim());

Fb f1 = new Fb();

int b;

System.out.println(“输出包含” + n + “项的斐波那契数列:”);

for(int i = 0; i <= n; i++)

{

b = f1.f(i);

System.out.print(b + " ");

}

System.out.println();

}

}

3.编写基于Java语言的选择排序算法。

/***

  • 功能:该算法用选择排序对给定的数组排序

  • 输入:一个乱序的整数数组a[ ]

  • 输出:升序排列的整数数组a[ ]

***/

public void selectionSort (int a[ ])

{

int temp,min;

for(int i=0;i<a.length-1;i++)

{

min = i;

for(int j=i+1;j<a.length;j++)

if(a[min] > a[j])

min = j;

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

4.编写基于Java语言的冒泡排序算法。

/***

  • 功能:该算法用冒泡排序对给定的数组排序

  • 输入:一个乱序的整数数组a[ ]

  • 输出:升序排列的整数数组a[ ]

***/

public void bubbleSort(int a[ ])

最后

分享一份NDK基础开发资料

详解:Linux网络虚拟化技术

分享内容包括不限于高级UI、性能优化、架构师课程、NDK、混合式开发(ReactNative+Weex)微信小程序、Flutter等全方面的Android进阶实践技术;希望能帮助到大家,也节省大家在网上搜索资料的时间来学习,也可以分享动态给身边好友一起学习!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

ln(“请输入一个整数:”);

System.in.read(buf);

String str=new String(buf);

int n=Integer.parseInt(str.trim());

//计算N!的值

long result = f(n);

//输出结果

System.out.println(n + “!=” + result);

}

}

2.斐波那契数列:0,1,1,2,3,5,8,13,21,34,……

这个数列可以用一个简单的递推式和两个初始条件来定义:

当n > 1时,F(n) = F(n-1) + F(n-2)

F(0) = 0,F(1) = 1

请编写Java应用程序,由键盘输入n的值代表要生成斐波那契数列的项数,在屏幕上输出n项斐波那契数列。

import java.io.*;

public class Fb{

/斐波那契数列算法/

int f(int n){

int r;

if(n <= 1)

r = n;

else

r = f(n-1) + f(n-2);

return r;

}

public static void main(String args[]) throws IOException{

System.out.println(“请输入所求斐波那契数列的项数:”);

byte buf[] = new byte[20];

System.in.read(buf);

String t1 = new String(buf);

int n = Integer.parseInt(t1.trim());

Fb f1 = new Fb();

int b;

System.out.println(“输出包含” + n + “项的斐波那契数列:”);

for(int i = 0; i <= n; i++)

{

b = f1.f(i);

System.out.print(b + " ");

}

System.out.println();

}

}

3.编写基于Java语言的选择排序算法。

/***

  • 功能:该算法用选择排序对给定的数组排序

  • 输入:一个乱序的整数数组a[ ]

  • 输出:升序排列的整数数组a[ ]

***/

public void selectionSort (int a[ ])

{

int temp,min;

for(int i=0;i<a.length-1;i++)

{

min = i;

for(int j=i+1;j<a.length;j++)

if(a[min] > a[j])

min = j;

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

4.编写基于Java语言的冒泡排序算法。

/***

  • 功能:该算法用冒泡排序对给定的数组排序

  • 输入:一个乱序的整数数组a[ ]

  • 输出:升序排列的整数数组a[ ]

***/

public void bubbleSort(int a[ ])

最后

分享一份NDK基础开发资料

[外链图片转存中…(img-bXKL3ZiV-1715247514621)]

分享内容包括不限于高级UI、性能优化、架构师课程、NDK、混合式开发(ReactNative+Weex)微信小程序、Flutter等全方面的Android进阶实践技术;希望能帮助到大家,也节省大家在网上搜索资料的时间来学习,也可以分享动态给身边好友一起学习!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值