python对肌电信号进行简单的手势识别_python肌电信号标记

张手

手腕内翻

手腕外翻

将四通道的肌肉电信号汇总求其绝对值平均值,利用移动窗口法,取若干连续时间序列对应的信号强度求局域平均,若其后若干点的均值都超过一定阈值,则视为一个动作开始,反之若其后若干点的局域均值都小于阈值,则视为一个动作结束

def get_mean_semg(data):
    mean_semg=[]
    for i in range(len(data)-1):
        mean_semg.append((data.ch1[i]+data.ch2[i]+data.ch3[i]+data.ch4[i])/4)
    return mean_semg


for i in range(1,5):
    names['mean_semg_%s'%i]=get_mean_semg(names['data%s'%i])
    plt.figure()
    plt.plot(names['mean_semg_%s'%i])
    plt.ylim(0,5)
    plt.savefig('a%s'%i,dpi=400)

握拳

张手

内翻

外翻

def get_move_window(mean_semg):
    mean_semg_arr=np.array(mean_semg)
    return pd.rolling_mean(mean_semg_arr,window=800)
    
def get_break(data,i,thre,windowlenth):
    for i in range(i,i+windowlenth):
        if data[i]<thre:
            return 0
    return 1

for i in range(1,5):
    names['move_averge_%s'%i]=get_move_window(names['mean_semg_%s'%i])
    names['sta_%s'%i]=[]
    names['end_%s'%i]=[]
    thre=1.1
    windowlenth=800
    for j in range(len(names['move_averge_%s'%i])-1):
        if get_break(names['move_averge_%s'%i],j,thre,windowlenth)==0 and get_break(names['move_averge_%s'%i],j+1,thre,windowlenth)==1:
            names['sta_%s'%i].append(j)
        if get_break(names['move_averge_%s'%i],j,thre,windowlenth)==1 and get_break(names['move_averge_%s'%i],j+1,thre,windowlenth)==0:
            names['end_%s'%i].append(j)

获取平均值起始点,并将对应时间点作用于原始信号上,对四通道信号进行行动段提取,并将长度较小的部分过滤,视为噪音

for i in range(1,5):
    names['period_%s'%i]=[]
    names['sta_filt_%s'%i]=[]
    names['end_filt_%s'%i]=[]
    for j in range(len(names['sta_%s'%i])):
        names['period_%s'%i].append(names['end_%s'%i][j]-names['sta_%s'%i][j])
    for k in range(len(names['period_%s'%i])):
        if names['period_%s'%i][k]>5000:
            names['sta_filt_%s'%i].append(names['sta_%s'%i][k])
            names['end_filt_%s'%i].append(names['end_%s'%i][k])
for i in range(1,len(sta_filt_1)+1):
    names['data1_cut%s'%i]=data1[sta_filt_1[i-1]:end_filt_1[i-1]]
for i in range(1,len(sta_filt_2)+1):
    names['data2_cut%s'%i]=data2[sta_filt_2[i-1]:end_filt_2[i-1]]
for i in range(1,len(sta_filt_3)+1):
    names['data3_cut%s'%i]=data3[sta_filt_3[i-1]:end_filt_3[i-1]]
for i in range(1,len(sta_filt_4)+1):
    names['data4_cut%s'%i]=data4[sta_filt_4[i-1]:end_filt_4[i-1]]
    
   

plt.figure(figsize=(50,3))
for i in range(1,21):
    plt.subplot2grid((1,20),(0,i-1),colspan=1).plot(names['data1_cut%s'%i])
    plt.ylim(0,10)
    plt.title('fist')
plt.figure(figsize=(50,3))
for i in range(1,22):
    plt.subplot2grid((1,21),(0,i-1),colspan=1).plot(names['data2_cut%s'%i])
    plt.ylim(0,10)
    plt.title('open')
plt.figure(figsize=(50,3))
for i in range(1,25):
    plt.subplot2grid((1,24),(0,i-1),colspan=1).plot(names['data3_cut%s'%i])
    plt.ylim(0,10)
    plt.title('toright')
plt.figure(figsize=(50,3))
for i in range(1,21):
    plt.subplot2grid((1,20),(0,i-1),colspan=1).plot(names['data4_cut%s'%i])
    plt.ylim(0,10)
    plt.title('toleft')

握拳

张手

内弯

外翻

对各通道行动段求区间的平均值MAV,可以看出对于不同的动作,MAV值区别明显,可以作为特征向量对信号进行特征提取

mav_fist=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(20)])
for i in range(1,21):
    mav_fist.loc[i-1,'ch1']=names['data1_cut%s'%i].ch1.mean()
    mav_fist.loc[i-1,'ch2']=names['data1_cut%s'%i].ch2.mean()
    mav_fist.loc[i-1,'ch3']=names['data1_cut%s'%i].ch3.mean()
    mav_fist.loc[i-1,'ch4']=names['data1_cut%s'%i].ch4.mean()
mav_open=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(21)])
for i in range(1,22):
    mav_open.loc[i-1,'ch1']=names['data2_cut%s'%i].ch1.mean()
    mav_open.loc[i-1,'ch2']=names['data2_cut%s'%i].ch2.mean()
    mav_open.loc[i-1,'ch3']=names['data2_cut%s'%i].ch3.mean()
    mav_open.loc[i-1,'ch4']=names['data2_cut%s'%i].ch4.mean()
mav_toright=pd.DataFrame(columns=['ch1','ch2','ch3','ch4'],index=[np.arange(24)])
for i in range(1,25):
    mav_toright.loc[i-1,'ch1']=names['data3_cut%s'%i].ch1.mean()
    mav_toright.loc[i-1,'ch2']=names['data3_cut%s'%i].ch2.mean()


现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。



分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

![](https://img-blog.csdnimg.cn/img_convert/21b2604bd33c4b6713f686ddd3fe5aff.png)



**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值