基于 Express 应用框架的技术方案选型浅谈


基于 Node.js 的 Web 应用框架很多,包括但不限于

  • Express :已经成为开发 Node.js WEB 应用的标准框架,大多数工程师都很熟悉他的设计思想(极简的内核,但能让你用各种中间件来扩展他的功能)

  • Koa :设计思想非常类似 Express,区别在于它是使用 ES6 中的 generator 编写,这种写法解决了大家所熟知的回调地狱问题

  • Feathers:用来实现面向服务架构的一种灵活的解决方案,非常适合创建 Node.js 微服务

  • Sails :是一个全能的 MVC 框架,主要是受到 Ruby on Rails 启发,已经存在很长时间,支持各种数据库,不管是 SQL 还是 No-SQL

  • Egg :为企业级框架和应用而生

  • Modal:创建基于 PostgreSQL 的无状态的、分布式的服务

  • Keystone:快速搭建基于 MongoDB 的管理后台的最佳解决方案,基于数据模型的定义即可自动生成后台界面,支持常见的增删改查操作和灵活的数据过滤

  • Loopback:内置了很多特性的成熟框架,支持基于 token 的认证,支持各种数据库。loopback 的“杀手锏”功能是 API 浏览器,该功能能让开发者用非常直观的方式查看所有的 API 接口,如果你需要创建 API 服务的话,它无疑是个很好的选择

本文主要讲解 Express 应用框架,虽然它提供的能力非常简单,但对于一些工具平台的开发完全可以胜任,并且可以写出各种千奇百怪的 MVC 模式(如果对服务端 MVC 不是很清晰可以阅读 服务端 MVC 之 Model2 的衍生)。这里简单介绍以前设计的几种基于 Express 扩展的技术选型方案,恰好涵盖了 React、Angular 以及 Vue 这三个 Web 前端框架。

温馨提示: 接下来使用的示例项目都相对简单,希望对刚入门 Express 的小白们有所启示。

React 技术方案选型


2016年7月到10月,从零开始学习 React 并使用 React 设计了服务端渲染的 Express 应用(同年10月25日诞生了 Next.js ),大致的技术选型如下:

  • Bootstrap

  • React

  • Mongoose

  • Webpack

  • Karma/Chai

由于对 React 不是很熟悉,首先实现了单页应用,然后实现了服务端渲染应用。

实现 React 单页应用(SPA)

React 学习和设计过程

在使用 React 之前只会简单的使用 Bootstrap,当时对 React 的学习历程大致如下:

  • 学习 React 语法

  • 学习 ES6 / ES7 语法

  • 学习 Babel / Webpack,打包代码支持 ES6 / ES7 / JSX 语法

  • 学习 webpack-dev-server / Hot Module Replacement,启动开发环境的 Express 服务,实现热加载功能

  • 学习 flux / react-redux

  • 学习 react-router

  • 学习 mocha / karma

学习总结文档如下:

  • Webpack

  • Server

  • React-Redux

  • React-Router

  • Mocha

  • Karma

以上学习过程记录在 react-demo 和 react-start-kit  (小而全的概念性参考价值)中,此时只是简单的 React 单页应用设计过程。大致结构如下:

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值