既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
C#联合Halcon深度学习源代码分享
1 预处理图像
1.1 选择图像目录
所选目录可以是同时包含训练图像和测试图像的主目录,也可以是训练图像目录或测试图像目录,优先选择主目录.如本例提供图片选择mnist_images、Train_images或Test_images目录(不知道本例图片在哪的请先将“mnist_images.rar”解压后使用). 如果使用其它图像,需要目录格式与本例一致.
1.2 预处理图像
在进行此步图像预处理时,如果使用其它图像,可以先对图像进行裁剪、旋转、翻转或滤波等普通图像处理,然后再使用深度学习算法处理图像使其能够用于训练.参考Halcon算子描述preprocess_dl_classifier_images.
预处理后的数据会自动保存在mnist_images\Preprocessed_images文件夹内.如果提示已有预处理好的数据,可以跳过此步直接开始训练,也可以选择删除已有数据重新预处理图像.
2 训练分类器
2.1 参数设置
建议使用不同参数设置多次进行训练,了解不同参数设置对训练的影响,可以找到更好的训练参数设置.
注意:BatchSize太大容易导致显存溢出,太小可能不收敛;NumEpochs训练次数越多需要时间越长;LearningRate学习率太大收敛速度快但可能会陷入局部最优,学习率太小收敛速度慢,所需训练次数多;TrainingPercent训练数据太少可能会过拟合;ValidationPercent用于验证的数据比例.
学习率变化曲线表达公式:LearningRate(Epoch) = InitialLearningRate * Math.Pow(LearningRateStepRatio , Math.Floor(Epoch / LearningRateStepEveryNthEpoch));
2.3 保存分类器
训练完成会自动保存训练模型结果,训练模型默认保存名称为"classifier+图像文件夹名称.hdl",默认保存目录为当前程序运行目录,点击此按钮可以手动另存到其它地方,分类器扩展名应为.hdl
2.4 误差分析
以验证数据集计算训练模型的预测值与实际值得差异,生成混淆矩阵显示.可以分析哪类数据容易被识别错误.
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**