C#联合Halcon深度学习源代码分享1 预处理图像2图像识别测试3误差分析(含导入步骤文档,含中文注释) (附源码链接)_c

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

C#联合Halcon深度学习源代码分享

点我下载资源

1 预处理图像

1.1 选择图像目录

所选目录可以是同时包含训练图像和测试图像的主目录,也可以是训练图像目录或测试图像目录,优先选择主目录.如本例提供图片选择mnist_images、Train_images或Test_images目录(不知道本例图片在哪的请先将“mnist_images.rar”解压后使用). 如果使用其它图像,需要目录格式与本例一致.

1.2 预处理图像

在进行此步图像预处理时,如果使用其它图像,可以先对图像进行裁剪、旋转、翻转或滤波等普通图像处理,然后再使用深度学习算法处理图像使其能够用于训练.参考Halcon算子描述preprocess_dl_classifier_images.
预处理后的数据会自动保存在mnist_images\Preprocessed_images文件夹内.如果提示已有预处理好的数据,可以跳过此步直接开始训练,也可以选择删除已有数据重新预处理图像.
在这里插入图片描述

2 训练分类器

2.1 参数设置

建议使用不同参数设置多次进行训练,了解不同参数设置对训练的影响,可以找到更好的训练参数设置.
注意:BatchSize太大容易导致显存溢出,太小可能不收敛;NumEpochs训练次数越多需要时间越长;LearningRate学习率太大收敛速度快但可能会陷入局部最优,学习率太小收敛速度慢,所需训练次数多;TrainingPercent训练数据太少可能会过拟合;ValidationPercent用于验证的数据比例.
学习率变化曲线表达公式:LearningRate(Epoch) = InitialLearningRate * Math.Pow(LearningRateStepRatio , Math.Floor(Epoch / LearningRateStepEveryNthEpoch));
在这里插入图片描述

在这里插入图片描述

2.3 保存分类器

训练完成会自动保存训练模型结果,训练模型默认保存名称为"classifier+图像文件夹名称.hdl",默认保存目录为当前程序运行目录,点击此按钮可以手动另存到其它地方,分类器扩展名应为.hdl

2.4 误差分析

以验证数据集计算训练模型的预测值与实际值得差异,生成混淆矩阵显示.可以分析哪类数据容易被识别错误.
在这里插入图片描述

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值