Deep Learning Tool 22.10 下载安装教程

前言

在使用Halcon的深度学习模型完成目标检测任务前,需要对数据集进行标注。此时需要应用Halcon的专用标注工具,即Deep Learning Tool,本博客将记录其的下载与安装过程。


方法

1、打开☞官网,填写注册 / 登录信息。
(密码格式:大于10位,且同时包含大小写字母,及至少一个特殊字符(. , =))
在这里插入图片描述
2、登陆后,点击官网中所示区域进行下载。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3、解压zip文件后,双击打开exe文件。

在这里插入图片描述
点击所示区域。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、安装完成后,在INSTALLED界面可看到应用信息,点击LAUNCH即可运行。
在这里插入图片描述
或者点击桌面的快捷方式运行。
在这里插入图片描述
以上安装就完成了!
Deep Learning Tool 22.10的安装包放在评论区了,大家可自行下载~

------tbc-------
有用请点个👍哦~~😀

深度学习工具包 Deprecation notice. ----- This toolbox is outdated and no longer maintained. There are much better tools available for deep learning than this toolbox, e.g. [Theano](http://deeplearning.net/software/theano/), [torch](http://torch.ch/) or [tensorflow](http://www.tensorflow.org/) I would suggest you use one of the tools mentioned above rather than use this toolbox. Best, Rasmus. DeepLearnToolbox ================ A Matlab toolbox for Deep Learning. Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng. * [The Next Generation of Neural Networks](http://www.youtube.com/watch?v=AyzOUbkUf3M) (Hinton, 2007) * [Recent Developments in Deep Learning](http://www.youtube.com/watch?v=VdIURAu1-aU) (Hinton, 2010) * [Unsupervised Feature Learning and Deep Learning](http://www.youtube.com/watch?v=ZmNOAtZIgIk) (Ng, 2011) If you use this toolbox in your research please cite [Prediction as a candidate for learning deep hierarchical models of data](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6284) ``` @MASTERSTHESIS\{IMM2012-06284, author = "R. B. Palm", title = "Prediction as a candidate for learning deep hierarchical models of data", year = "2012", } ``` Contact: rasmusbergpalm at gmail dot com Directories included in the toolbox ----------------------------------- `NN/` - A library for Feedforward Backpropagation Neural Networks `CNN/` - A library for Convolutional Neural Networks `DBN/` - A library for Deep Belief Networks `SAE/` - A library for Stacked Auto-Encoders `CAE/` - A library for Convolutional Auto-Encoders `util/` - Utility functions used by the libraries `data/` - Data used by the examples `tests/` - unit tests to verify toolbox is working For references on each library check REFS.md Setup ----- 1. Download. 2. addpath(genpath('DeepLearnToolbox')); Example: Deep Belief Network --------------------- ```matlab function test_example_DBN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit RBM and visualize its weights rand('state',0) dbn.sizes = [100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights %% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN rand('state',0) %train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); %unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); nn.activation_function = 'sigm'; %train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, 'Too big error'); ``` Example: Stacked Auto-Encoders --------------------- ```matlab function test_example_SAE load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand('state',0) sae = saesetup([784 100]); sae.ae{1}.activation_function = 'sigm'; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)') % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, 'Too big error'); ``` Example: Convolutional Neural Nets --------------------- ```matlab function test_example_CNN load mnist_uint8; train_x = double(reshape(train_x',28,28,60000))/255; test_x = double(reshape(test_x',28,28,10000))/255; train_y = double(train_y'); test_y = double(test_y'); %% ex1 Train a 6c-2s-12c-2s Convolutional neural network %will run 1 epoch in about 200 second and get around 11% error. %With 100 epochs you'll get around 1.2% error rand('state',0) cnn.layers = { struct('type', 'i') %input layer struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %sub sampling layer struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %subsampling layer }; cnn = cnnsetup(cnn, train_x, train_y); opts.alpha = 1; opts.batchsize = 50; opts.numepochs = 1; cnn = cnntrain(cnn, train_x, train_y, opts); [er, bad] = cnntest(cnn, test_x, test_y); %plot mean squared error figure; plot(cnn.rL); assert(er<0.12, 'Too big error'); ``` Example: Neural Networks --------------------- ```matlab function test_example_NN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); % normalize [train_x, mu, sigma] = zscore(train_x); test_x = normalize(test_x, mu, sigma); %% ex1 vanilla neural net rand('state',0) nn = nnsetup([784 100 10]); opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples [nn, L] = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.08, 'Too big error'); %% ex2 neural net with L2 weight decay rand('state',0) nn = nnsetup([784 100 10]); nn.weightPenaltyL2 = 1e-4; % L2 weight decay opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex3 neural net with dropout rand('state',0) nn = nnsetup([784 100 10]); nn.dropoutFraction = 0.5; % Dropout fraction opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex4 neural net with sigmoid activation function rand('state',0) nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; % Sigmoid activation function nn.learningRate = 1; % Sigm require a lower learning rate opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex5 plotting functionality rand('state',0) nn = nnsetup([784 20 10]); opts.numepochs = 5; % Number of full sweeps through data nn.output = 'softmax'; % use softmax output opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex6 neural net with sigmoid activation and plotting of validation and training error % split training data into training and validation data vx = train_x(1:10000,:); tx = train_x(10001:end,:); vy = train_y(1:10000,:); ty = train_y(10001:end,:); rand('state',0) nn = nnsetup([784 20 10]); nn.output = 'softmax'; % use softmax output opts.numepochs = 5; % Number of full sweeps through data opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, tx, ty, opts, vx, vy); % nntrain takes validation set as last two arguments (optionally) [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); ``` [![Bitdeli Badge](https://d2weczhvl823v0.cloudfront.net/rasmusbergpalm/deeplearntoolbox/trend.png)](https://bitdeli.com/free "Bitdeli Badge")
Deep Learning Toolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。 对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。 了解深度学习工具箱的基础知识 深度学习图像 从头开始训练卷积神经网络或使用预训练网络快速学习新任务 使用时间序列,序列和文本进行深度学习 为时间序列分类,回归和预测任务创建和训练网络 深度学习调整和可视化 绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能 并行和云中的深度学习 通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络 深度学习应用 通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程 深度学习导入,导出和自定义 导入和导出网络,定义自定义深度学习图层以及自定义数据存储 深度学习代码生成 生成MATLAB代码或CUDA ®和C ++代码和部署深学习网络 函数逼近和聚类 使用浅层神经网络执行回归,分类和聚类 时间序列和控制系统 基于浅网络的模型非线性动态系统; 使用顺序数据进行预测。
<think>好的,我现在需要帮用户寻找与深度学习相关的工具,特别是他们提到的“deep learning tools”。首先,用户提供了几个引用,我需要先仔细分析这些引用中的内容,看看有没有相关的工具信息。 引用[1]提到了HalconDeep Learning Tool 22.10,这是一个用于目标检测数据标注的工具。用户可能需要这样的工具来处理数据集。安装过程包括官网下载、解压安装,步骤看起来比较直接,应该是一个专用工具。 引用[2]和[3]都是关于MATLAB的Deep Learning Toolbox。引用[2]详细说明了如何从GitHub下载并安装这个工具箱到MATLAB中,而引用[3]讨论了使用该工具箱训练模型后可能遇到的问题,比如无法使用classify函数。这说明MATLAB的这个工具箱适合进行模型设计和训练,特别是对于熟悉MATLAB环境的用户来说是个不错的选择。 引用[4]则涉及Ubuntu系统下的深度学习环境配置,包括CUDA、PyTorch、TensorFlow等,这些更多是框架和库,属于开发环境的一部分,可能不是用户所指的具体工具,但可以作为补充信息。 接下来,我需要确定用户的需求是什么。他们可能是在寻找数据标注工具、模型训练工具,或者开发框架。根据用户的问题,他们明确提到了“deep learning tools”,而引用中的工具包括数据标注(Halcon)、MATLAB的工具箱,以及环境配置。因此,我应该将这些分类整理,并考虑是否有其他常见的工具需要补充,比如TensorFlow、PyTorch等,但用户可能更关注于已有的引用内容。 另外,用户希望生成相关问题。我需要根据提供的引用内容,提出与每个工具相关的问题,例如安装步骤、使用问题、应用场景等。例如,关于Halcon的安装步骤,MATLAB工具箱的使用问题,或者模型保存和加载的问题。 需要确保回答结构清晰,分点列出每个工具,并附上相关引用。同时,使用正确的中文表达和LaTeX格式,但根据用户的问题,可能不需要数学公式,但需要遵循格式要求。不过在这个回答中,可能不需要使用数学表达式,所以重点放在工具介绍和相关问题上。 最后,检查是否有遗漏的信息,例如引用中的DeepLearnToolbox-master的安装路径问题,或者Ubuntu环境配置是否属于工具的一部分。可能用户需要的是具体的软件工具,而非环境配置,所以主要聚焦在Halcon和MATLAB的工具箱上。 总结,回答应包括: 1. HalconDeep Learning Tool,用于数据标注。 2. MATLAB的Deep Learning Toolbox,用于模型设计和训练。 3. 可能提到的其他工具,如TensorFlow、PyTorch,但根据引用,主要围绕前两者。 4. 相关问题需要基于每个工具的特点和引用内容生成。</think>根据您提供的引用内容,以下是关于深度学习工具的整理和分析: --- ### **1. Halcon Deep Learning Tool(专用标注工具)** - **功能**:用于目标检测任务的数据集标注,支持图像预处理、标签管理和格式转换。 - **安装流程**: 1. 登录[官网](https://www.mvtec.com)注册/登录,下载Deep Learning Tool 22.10[^1]。 2. 解压安装包并运行`.exe`文件,按提示完成安装。 3. 通过桌面快捷方式或安装界面启动工具[^1]。 - **特点**:专为Halcon深度学习框架设计,适合工业视觉领域。 --- ### **2. MATLAB Deep Learning Toolbox(模型设计与训练)** - **功能**:提供深度学习模型设计、训练和部署工具,支持分类、回归等任务。 - **安装方法**: 1. 从GitHub下载[DeepLearnToolbox](https://github.com/rasmusbergpalm/DeepLearnToolbox)[^2]。 2. 将解压后的文件夹放入MATLAB安装目录的`toolbox`子目录[^2]。 3. 在MATLAB命令行添加路径: ```matlab addpath(genpath('你的安装路径/DeepLearnToolbox-master')) ``` - **常见问题**: - 训练后的模型需使用`classify`函数预测时,需确保数据格式与模型输入匹配[^3]。 - 保存/加载模型时需检查文件路径和网络结构一致性[^3]。 --- ### **3. 深度学习开发环境配置(补充参考)** 引用[4]提到Ubuntu系统中部署的框架(如TensorFlow、PyTorch),此类工具更适合算法开发与实验,但需要自行配置CUDA、cuDNN等依赖[^4]。 --- ### **工具对比与选择建议** | 工具类型 | 适用场景 | 学习成本 | |----------------|----------------------------|----------| | Halcon标注工具 | 工业视觉数据标注 | 低 | | MATLAB工具箱 | 学术研究、快速原型设计 | 中 | | TensorFlow等 | 大规模模型训练、自定义算法 | 高 | --- §§**相关问题**§§ 1. Halcon Deep Learning Tool支持哪些图像标注格式?[^1] 2. MATLAB Deep Learning Toolbox如何解决模型加载时的兼容性问题?[^3] 3. 如何在Ubuntu系统中验证CUDA是否安装成功? 4. 使用Halcon标注工具时,如何处理大规模数据集? 5. MATLAB的`classify`函数报错“输入维度不匹配”应如何调试?[^3]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

8倍

谢谢大佬~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值