python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取


分类模型的评估

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型优化与选择

1.交叉验证

交叉验证:为了让被评估的模型更加准确可信
交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。

在这里插入图片描述

2.网格搜索

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

在这里插入图片描述

knn = KNeighborsClassifier()
    # # fit, predict 预测, score 得出准确率
    # knn.fit(x\_train, y\_train)
    # # 得出预测结果
    # y\_predict = knn.predict(x\_test)
    # print("预测的目标签到位置为:", y\_predict)
    # # 得出准确率
    # print("预测的准确率:", knn.score(x\_test, y\_test))
    # 构造一些参数的值进行搜索
    param = {"n\_neighbors": [3, 5, 10]}
    # 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)#二折交叉验证
    gc.fit(x_train, y_train)
    # 预测准确率
    print("在测试集上准确率:", gc.score(x_test, y_test))
    print("在交叉验证当中最好的结果:", gc.best_score_)
    print("选择最好的模型是:", gc.best_estimator_)
    print("每个超参数每次交叉验证的结果:", gc.cv_results_)

【分类】K近邻算法

在这里插入图片描述
在这里插入图片描述

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

在这里插入图片描述

k值取多大?有什么影响?

  • k值取很小:容易受异常点影响
  • k值取很大:容易受最近数据太多导致比例变化

在这里插入图片描述

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
if __name__ == "\_\_main\_\_":
    decision()

def knncls():
    """
 K-近邻预测用户签到位置
 :return:None
 """
    # 读取数据
    data = pd.read_csv("./data/FBlocation/train.csv")
    # print(data.head(10))
    # 处理数据
    # 1、缩小数据,查询数据晒讯
    data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
    # 处理时间的数据
    time_value = pd.to_datetime(data['time'], unit='s')
    print(time_value)
    # 把日期格式转换成 字典格式
    time_value = pd.DatetimeIndex(time_value)
    # 构造一些特征
    data['day'] = time_value.day
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday
    # 把时间戳特征删除
    data = data.drop(['time'], axis=1)#1表示列,0表示行
    print(data)#没有时间戳特征的数据
    # 把签到数量少于n个目标位置删除
    place_count = data.groupby('place\_id').count()
    tf = place_count[place_count.row_id > 3].reset_index()#分组后逆操作,重新设置索引
    data = data[data['place\_id'].isin(tf.place_id)]
    # 取出数据当中的特征值和目标值
    y = data['place\_id']#取目标值
    x = data.drop(['place\_id'], axis=1)#删除特征值就得到目标值
    # 进行数据的分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
    # 特征工程(标准化)
    std = StandardScaler()
    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)
    # 进行算法流程 # 超参数
    knn = KNeighborsClassifier()
    # # fit, predict 预测, score 得出准确率
    # knn.fit(x\_train, y\_train)
    #
    # # 得出预测结果
    # y\_predict = knn.predict(x\_test)
    #
    # print("预测的目标签到位置为:", y\_predict)
    #
    # # 得出准确率
    # print("预测的准确率:", knn.score(x\_test, y\_test))
    # 构造一些参数的值进行搜索
    param = {"n\_neighbors": [3, 5, 10]}
    # 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    # 预测准确率
    print("在测试集上准确率:", gc.score(x_test, y_test))
    print("在交叉验证当中最好的结果:", gc.best_score_)
    print("选择最好的模型是:", gc.best_estimator_)
    print("每个超参数每次交叉验证的结果:", gc.cv_results_)
    return None

【分类】朴素贝叶斯——文本分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
优点:

  • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
  • 分类准确度高,速度快

缺点:

  • 需要知道先验概率P(F1,F2,…|C),因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

实例:新闻数据分类

from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import numpy as pd

def naviebayes():
    """
 朴素贝叶斯进行文本分类
 :return: None
 """
    news = fetch_20newsgroups(subset='all')
    # 进行数据分割
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)
    # 对数据集进行特征抽取
    tf = TfidfVectorizer()
    # 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
    x_train = tf.fit_transform(x_train)
    print(tf.get_feature_names())
    x_test = tf.transform(x_test)
    # 进行朴素贝叶斯算法的预测
    mlt = MultinomialNB(alpha=1.0)
    print(x_train)
    mlt.fit(x_train, y_train)
    y_predict = mlt.predict(x_test)
    print("预测的文章类别为:", y_predict)
    # 得出准确率
    print("准确率为:", mlt.score(x_test, y_test))
    print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))
    return None

if __name__ == "\_\_main\_\_":
    naviebayes()

【分类】决策树和随机森林

在这里插入图片描述

1.决策树

在这里插入图片描述
1.信息论
信息论的创始人,香农是密歇根大学学士,麻省理工学院博士。
1948年,香农发表了划时代的论文——通信的数学原理,奠定了现代信息论的基础
信息的单位:比特
32支球队,log32=5比特
64支球队,log64=6比特

在这里插入图片描述
在这里插入图片描述

2.决策树的算法

ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则
基尼系数:划分更仔细

3.代码实现

在这里插入图片描述
优点:

  • 简单的理解和解释,树木可视化。
  • 需要很少的数据准备,其他技术通常需要数据归一化,

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
  • 决策树可能不稳定,因为数据的小变化可能会导致完全不同的树生成

改进:

  • 减枝cart算法(决策树API中已经实现)
  • 随机森林

实例:泰坦尼克号预测生死

泰坦尼克号数据
在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。在泰坦尼克号的数据帧不包含从剧组信息,但它确实包含了乘客的一半的实际年龄。关于泰坦尼克号旅客的数据的主要来源是百科全书Titanica。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。

我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。

其中age数据存在缺失。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

from sklearn.model_selection import train_test_split, GridSearchCV
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, export_graphviz

def dieornot():
    """
 泰坦尼克生与死
 :return: None
 """
    data=pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
    # print(data.info())
    x=data[['pclass', 'age', 'sex']]
    y=data['survived']
    #缺失年龄数据处理
    x["age"].fillna(x["age"].mean(),inplace=True)
    # print(x)
    #划分训练和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
    # 进行处理(特征工程)特征-》类别-》one\_hot编码
    from sklearn.feature_extraction import DictVectorizer
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient="records"))
    # print(x\_train)
    print(dict.get_feature_names())#输出编码后的特征
    x_test = dict.fit_transform(x_test.to_dict(orient="records"))
    ##########################################
    # # 用决策树进行预测
    # dec = DecisionTreeClassifier()
    # dec.fit(x\_train, y\_train)
    # # 预测准确率
    # print("预测的准确率:", dec.score(x\_test, y\_test))
    # # 导出决策树的结构
    # export\_graphviz(dec, out\_file="./tree.dot", feature\_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])
    ###########################################
    from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier()
    param = {"n\_estimators": [120, 200, 300, 500, 800, 1200], "max\_depth": [5, 8, 15, 25, 30]}
    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    print("准确率:", gc.score(x_test, y_test))
    print("查看选择的参数模型:", gc.best_params_)
    return None

if __name__ == "\_\_main\_\_":
    dieornot()

【集成学习】随机森林

在这里插入图片描述

1.集成学习

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

2.随机森林

定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定

3.学习算法

在这里插入图片描述

4.代码实现

在这里插入图片描述

from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier()
    param = {"n\_estimators": [120, 200, 300, 500, 800, 1200], "max\_depth": [5, 8, 15, 25, 30]}
    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    print("准确率:", gc.score(x_test, y_test))
    print("查看选择的参数模型:", gc.best_params_)
    return None

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

t, y_test))
print(“查看选择的参数模型:”, gc.best_params_)
return None




[外链图片转存中...(img-7FnGPipu-1715064565317)]
[外链图片转存中...(img-HH7kbh8g-1715064565317)]
[外链图片转存中...(img-6CxXlX89-1715064565318)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化的资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618608311)**

  • 11
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值