2024年最全机器学习:Python实现聚类算法之总结(1)

本文介绍了Python中实现的几种聚类算法,包括Spectral Clustering和Hierarchical Clustering,详细讲解了算法原理、步骤及代码实现。通过实例展示了如何使用sklearn库进行数据生成、模型训练和结果可视化。最后讨论了DBSCAN算法,强调其在处理任意形状聚类和噪声点处理方面的优势和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

gamma :affinity指定的核函数的内核系数,默认1.0

c)主要属性

labels_ :每个数据的分类标签

d)算法示例:代码中有详细讲解内容

复制代码

from sklearn.datasets.samples_generator import make_blobs

from sklearn.cluster import spectral_clustering

import numpy as np

import matplotlib.pyplot as plt

from sklearn import metrics

from itertools import cycle ##python自带的迭代器模块

##产生随机数据的中心

centers = [[1, 1], [-1, -1], [1, -1]]

##产生的数据个数

n_samples=3000

##生产数据

X, lables_true = make_blobs(n_samples=n_samples, centers= centers, cluster_std=0.6,

random_state =0)

##变换成矩阵,输入必须是对称矩阵

metrics_metrix = (-1 * metrics.pairwise.pairwise_distances(X)).astype(np.int32)

metrics_metrix += -1 * metrics_metrix.min()

##设置谱聚类函数

n_clusters_= 4

lables = spectral_clustering(metrics_metrix,n_clusters=n_clusters_)

##绘图

plt.figure(1)

plt.clf()

colors = cycle(‘bgrcmykbgrcmykbgrcmykbgrcmyk’)

for k, col in zip(range(n_clusters_), colors):

##根据lables中的值是否等于k,重新组成一个True、False的数组

my_members = lables == k

##X[my_members, 0] 取出my_members对应位置为True的值的横坐标

plt.plot(X[my_members, 0], X[my_members, 1], col + ‘.’)

plt.title(‘Estimated number of clusters: %d’ % n_clusters_)

plt.show()

复制代码

e)效果图

图5

5.Hierarchical Clustering

1)概述

Hierarchical Clustering(层次聚类):就是按照某种方法进行层次分类,直到满足某种条件为止。

主要分成两类:

a)凝聚:从下到上。首先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有的对象都在一个簇中,或者某个终结条件被满足。

b)分裂:从上到下。首先将所有对象置于同一个簇中,然后逐渐细分为越来越小的簇,直到每

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值