学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
Tkinter
如果要为Python选出一款能够称得上“标准”的GUI工具包,那么答案应该是[Tkinter]。Tkinter是一款以Tcl/Tk为基础的打包工具,而后者则属于诞生自上世纪九十年代初的高人气图形界面与语言组合。Tkinter的最大优势在于拥有丰富的资源,其中包括文本与代码示例以及庞大的用户社区。通过示例,我们能够轻松上手这套图形界面实现方案。
Tkinter遵循Python许可,同时基于Tcl/Tk的BSD许可。
WxPython
[WxPython]将针对C++的wxWidgets跨平台GUI库带给了Python。WxPython是一套较为现代的方案,其外观的原生程度高于Tkinter,这主要归功于其更倾向于针对不同系统平台建立控件成果。其易于上手,同时拥有快速发展的开发者社区。不过大家需要自行将wxPython与应用相绑定,因为其无法通过Python自动进行安装。
WxPython采用其父项目wxWindows的库许可,这一许可获得了OSI批准。
四、Python系统运维常用库
1、psutil是一个跨平台库
能够实现获取系统运行的进程和系统利用率(内存,CPU,磁盘,网络等),主要用于系统监控,分析和系统资源及进程的管理。
2、IPy,辅助IP规划。
3、dnspython Python实现的一个DNS工具包。
4、difflib:difflib作为Python的标准模块,无需安装,作用是对比文本之间的差异。
5、filecmp:系统自带,可以实现文件,目录,遍历子目录的差异,对比功能。
6、smtplib:发送电子邮件模块
7、pycurl 是一个用C语言写的libcurl Python实现,功能强大,支持的协议有:FTP,HTTP,HTTPS,TELNET等,可以理解为Linux下curl命令功能的Python封装。
8、XlsxWriter:操作Excel工作表的文字,数字,公式,图表等。
9、rrdtool:用于跟踪对象的变化,生成这些变化的走走势图
10、scapy 是一个强大的交互式数据包处理程序,它能够对数据包进行伪造或解包,包括发送数据包,包嗅探,应答和反馈等功能。
11、Clam Antivirus免费开放源代码防毒软件,pyClamad,可以让Python模块直接使用ClamAV病毒扫描守护进程calmd。
12、pexpect:可以理解成Linux下expect的Python封装,通过pexpect我们可以实现对ssh,ftp,passwd,telnet等命令行进行自动交互,而无需人工干涉来达到自动化的目的。
13、paramiko是基于Python实现的SSH2远程安装连接,支持认证及密钥方式。可以实现远程命令执行,文件传输,中间SSH代理等功能。相对于Pexpect,封装的层次更高,更贴近SSH协议的功能,依赖:Crypto,Ecdsa,Python开发包python-devel
14、fabric是基于Python实现的SSH命令行工具,简化了SSH的应用程序部署及系统管理任务,它提供了系统基础的操作组件,可以实现本地或远程shell命令,包括命令执行,文件上传,下载及完整执行日志输出等功能。Fabric在paramiko的基础上做了更高一层的封装,操作起来更加简单。依赖setuptools,Crypto,paramiko包支持
15、CGIHTTPRequestHandler实现对CGI的支持。
16、ansible 一种集成IT系统的配置管理,应用部署,执行特定任务的开源平台。基于Python实现,由Paramiko和PyYAML两个关键模块构建。Ansibl与Saltstack最大的区别是Ansible无需在被控主机上部署任何客户端,默认直接通过SSH通道进行远程命令执行或下发功能。
17、YAML:是一种用来表达数据序列的编程语言。
18、playbook:一个非常简单的配置管理和多主机部署系统。
19、saltstack 是一个服务器基础架构集中化管理平台,一般可以理解为简化版的puppet和加强版的func。Saltstack基于Python语言实现,结合轻量级消息队列ZeroMQ,与Python每三方模块(Pyzmq,PyCrypto,Pyjinja2,python-msgpack和PyYAML等)构建。
20、func,为解决集群管理,监控问题需设计开发的系统管理基础框架。
四、Python科学数字计算的框架
Python中的数据科学计算库有Numpy、Scipy、pandas、matplotlib
Numpy是一个基础性的Python库,为我们提供了常用的数值数组和函数。numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架。
Scipy是Python的科学计算库,对Numpy的功能进行了扩充,同时也有部分功能是重合的。Numpy和Scipy曾经共享过基础代码。
pandas是一个流行的开源Python项目,它的名称取panel data(面板数据,一个计量经济学的术语)和Python data analysis(Python数据分析)的意思。matplotlib是一个基于Numpy的绘图库。
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表。Matplotlib最早是为了可视化癫痫病人的脑皮层电图相关的信号而研发,因为在函数的设计上参考了MATLAB,所以叫做Matplotlib。Matplotlib首次发表于2007年,在开源和社区的推动下,现在在基于Python的各个科学计算领域都得到了广泛应用。Matplotlib的原作者John D. Hunter博士是一名神经生物学家,2012年不幸因癌症去世,感谢他创建了这样一个伟大的库。
四、Python的3D游戏开发框架
Pygame是跨平台Python模块,专为电子游戏设计。包含图像、声音。pygame建立在SDL基础上,允许实时电子游戏研发而无需被低级语言(如机器语言和汇编语言)束缚。基于这样一个设想,所有需要的游戏功能和理念都(主要是图像方面)都完全简化为游戏逻辑本身,所有的资源结构都可以由高级语言提供,如Python。
ocos2d-python上面很多都用pyglet这个库的,里面主要的精灵什么的也是针对pyglet的封装,另外还封装了些音频库什么的。
五、Python的其他流行的开发框架
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py:创造矢量地图的轻量级Python框架
Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。
Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!