大数据最新<JDBC> 数据库连接池技术:你知道这些吗?,2024年最新重磅

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!


🔥C3P0数据库连接池

👌获取连接方式一
//使用C3P0数据库连接池的方式,获取数据库的连接:不推荐
public static Connection getConnection1() throws Exception{
    ComboPooledDataSource cpds = new ComboPooledDataSource();
    cpds.setDriverClass("com.mysql.jdbc.Driver"); 
    cpds.setJdbcUrl("jdbc:mysql://localhost:3306/test");
    cpds.setUser("root");
    cpds.setPassword("abc123");
        
// cpds.setMaxPoolSize(100);
    
    Connection conn = cpds.getConnection();
    return conn;
}


👌获取连接方式二(推荐)
//使用C3P0数据库连接池的配置文件方式,获取数据库的连接:推荐
private static DataSource cpds = new ComboPooledDataSource("helloc3p0");
public static Connection getConnection2() throws SQLException{
    Connection conn = cpds.getConnection();
    return conn;
}

其中,src下的配置文件为:【c3p0-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<c3p0-config>
	<named-config name="helloc3p0">
		<!-- 获取连接的4个基本信息 -->
		<property name="user">root</property>
		<property name="password">abc123</property>
		<property name="jdbcUrl">jdbc:mysql:///test</property>
		<property name="driverClass">com.mysql.jdbc.Driver</property>
		
		<!-- 涉及到数据库连接池的管理的相关属性的设置 -->
		<!-- 若数据库中连接数不足时, 一次向数据库服务器申请多少个连接 -->
		<property name="acquireIncrement">5</property>
		<!-- 初始化数据库连接池时连接的数量 -->
		<property name="initialPoolSize">5</property>
		<!-- 数据库连接池中的最小的数据库连接数 -->
		<property name="minPoolSize">5</property>
		<!-- 数据库连接池中的最大的数据库连接数 -->
		<property name="maxPoolSize">10</property>
		<!-- C3P0 数据库连接池可以维护的 Statement 的个数 -->
		<property name="maxStatements">20</property>
		<!-- 每个连接同时可以使用的 Statement 对象的个数 -->
		<property name="maxStatementsPerConnection">5</property>

	</named-config>
</c3p0-config>


🔥DBCP数据库连接池

DBCP 是 Apache 软件基金组织下的开源连接池实现该连接池依赖该组织下的另一个开源系统:Common-pool。如需使用该连接池实现,应在系统中增加如下两个 jar 文件:
Commons-dbcp.jar连接池的实现

Commons-pool.jar连接池实现的依赖库

Tomcat 的连接池正是采用该连接池来实现的。该数据库连接池既可以与应用服务器整合使用,也可由应用程序独立使用

当数据库访问结束后,程序还是像以前一样关闭数据库连接:conn.close(); 但上面的代码并没有关闭数据库的物理连接,它仅仅把数据库连接释放,归还给了数据库连接池


👌配置属性说明
属性默认值说明
initialSize0连接池启动时创建的初始化连接数量
maxActive8连接池中可同时连接的最大的连接数
maxIdle8连接池中最大的空闲的连接数,超过的空闲连接将被释放,如果设置为负数表示不限制
minIdle0连接池中最小的空闲的连接数,低于这个数量会被创建新的连接。该参数越接近maxIdle,性能越好,因为连接的创建和销毁,都是需要消耗资源的;但是不能太大
maxWait无限制最大等待时间,当没有可用连接时,连接池等待连接释放的最大时间,超过该时间限制会抛出异常,如果设置-1表示无限等待
poolPreparedStatementsfalse开启池的Statement是否prepared
maxOpenPreparedStatements无限制开启池的prepared 后的同时最大连接数
minEvictableIdleTimeMillis连接池中连接,在时间段内一直空闲, 被逐出连接池的时间
removeAbandonedTimeout300超过时间限制,回收没有用(废弃)的连接
removeAbandonedfalse超过removeAbandonedTimeout时间后,是否进 行没用连接(废弃)的回收

👌获取连接方式一
public static Connection getConnection3() throws Exception {
    BasicDataSource source = new BasicDataSource();
        
    source.setDriverClassName("com.mysql.jdbc.Driver");
    source.setUrl("jdbc:mysql:///test");
    source.setUsername("root");
    source.setPassword("abc123");
        
    //
    source.setInitialSize(10);
        
    Connection conn = source.getConnection();
    return conn;
}


👌获取连接方式二(推荐)
//使用dbcp数据库连接池的配置文件方式,获取数据库的连接
private static DataSource source = null;
static{
    try {
        Properties pros = new Properties();
        
        InputStream is = DBCPTest.class.getClassLoader().getResourceAsStream("dbcp.properties");
            
        pros.load(is);
        //根据提供的BasicDataSourceFactory创建对应的DataSource对象
        source = BasicDataSourceFactory.createDataSource(pros);
    } catch (Exception e) {
        e.printStackTrace();
    }
        
}
public static Connection getConnection4() throws Exception {
        
    Connection conn = source.getConnection();
    
    return conn;
}

其中,src下的配置文件为:【dbcp.properties

driverClassName=com.mysql.jdbc.Driver
url=jdbc:mysql://localhost:3306/test?rewriteBatchedStatements=true&useServerPrepStmts=false
username=root
password=abc123

initialSize=10
#...


🔥Druid(德鲁伊)数据库连接池

Druid是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0、DBCP、Proxool等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB连接池,可以说是目前最好的连接池之一

import java.sql.Connection;
import java.util.Properties;
​
import javax.sql.DataSource;
​
import com.alibaba.druid.pool.DruidDataSourceFactory;
​
public class TestDruid {
    public static void main(String[] args) throws Exception {
        Properties pro = new Properties();       pro.load(TestDruid.class.getClassLoader().getResourceAsStream("druid.properties"));
        DataSource ds = DruidDataSourceFactory.createDataSource(pro);
        Connection conn = ds.getConnection();
        System.out.println(conn);
    }
}

其中,src下的配置文件为:【druid.properties

url=jdbc:mysql://localhost:3306/test?rewriteBatchedStatements=true
username=root
password=123456
driverClassName=com.mysql.jdbc.Driver
​
initialSize=10
maxActive=20
maxWait=1000
filters=wall


👌详细配置参数:
配置缺省说明
name配置这个属性的意义在于,如果存在多个数据源,监控的时候可以通过名字来区分开来。 如果没有配置,将会生成一个名字,格式是:”DataSource-” + System.identityHashCode(this)
url连接数据库的url,不同数据库不一样。例如:mysql : jdbc:mysql://10.20.153.104:3306/druid2 oracle : jdbc:oracle:thin:@10.20.149.85:1521:ocnauto
username连接数据库的用户名
password连接数据库的密码。如果你不希望密码直接写在配置文件中,可以使用ConfigFilter。详细看这里:https://github.com/alibaba/druid/wiki/使用ConfigFilter
driverClassName根据url自动识别 这一项可配可不配,如果不配置druid会根据url自动识别dbType,然后选择相应的driverClassName(建议配置下)
initialSize0初始化时建立物理连接的个数。初始化发生在显示调用init方法,或者第一次getConnection时
maxActive8最大连接池数量
maxIdle8已经不再使用,配置了也没效果
minIdle最小连接池数量
maxWait获取连接时最大等待时间,单位毫秒。配置了maxWait之后,缺省启用公平锁,并发效率会有所下降,如果需要可以通过配置useUnfairLock属性为true使用非公平锁
poolPreparedStatementsfalse是否缓存preparedStatement,也就是PSCache。PSCache对支持游标的数据库性能提升巨大,比如说oracle。在mysql下建议关闭
maxOpenPreparedStatements-1要启用PSCache,必须配置大于0,当大于0时,poolPreparedStatements自动触发修改为true。在Druid中,不会存在Oracle下PSCache占用内存过多的问题,可以把这个数值配置大一些,比如说100
validationQuery用来检测连接是否有效的sql,要求是一个查询语句。如果validationQuery为null,testOnBorrow、testOnReturn、testWhileIdle都不会其作用

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

]
[外链图片转存中…(img-8Rm9t53i-1715780230913)]
[外链图片转存中…(img-pClcQNpP-1715780230914)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值