https://aistudio.baidu.com/aistudio/datasetdetail/123686
2.上传数据集至Notebook并解压
!unzip -q /home/work/chepaishibie.zip
3.生成标签文档
-
本次使用的数据集为CCPD2019车牌数据集
-
该数据集在合肥市的停车场采集得来,采集时间早上7:30到晚上10:00。停车场采集人员手持Android POS机对停车场的车辆拍照并手工标注车牌位置。拍摄的车牌照片涉及多种复杂环境,包括模糊、倾斜、阴雨天、雪天等等。CCPD数据集一共包含将近30万张图片,每种图片大小720x1160x3。一共包含8项,具体如下:
-
CCPD数据集没有专门的标注文件,每张图像的文件名就是对应的数据标注(label)
-
- 例如:025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg 由分隔符’-'分为几个部分:
-
- 025为区域
-
95_113 对应两个角度, 水平95°, 竖直113°
-
154&383_386&473对应边界框坐标:左上(154, 383), 右下(386, 473)
-
386&473_177&454_154&383_363&402对应四个角点坐标
-
0_0_22_27_27_33_16为车牌号码 映射关系如下: 第一个为省份0 对应省份字典皖, 后面的为字母和文字, 查看ads字典.如0为A, 22为Y…
- 仅使用到数据集中正常车牌即ccpd_base的数据
import os, cv2
import random
words_list = [
“A”, “B”, “C”, “D”, “E”,
“F”, “G”, “H”, “J”, “K”,
“L”, “M”, “N”, “P”, “Q”,
“R”, “S”, “T”, “U”, “V”,