数据分析案例:统计电影分类情况

本文介绍了如何使用Python处理IMDB电影数据,提取并分析电影的分类信息,使用set集合消除重复,计算各类别的电影数量,并通过matplotlib生成条形图展示结果。文章还提及了Python学习资源和实战应用的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

==========================================================================

26行的temp_type_list是一个列表,每一项也是一个列表,每一个列表项存放每一部电影的分类信息。

在30行中使用两层循环将temp_type_list展开成一位数组。

对分类信息计数

==================================================================

首先要拿出一组数据表示这些电影有哪几种分类,这里就用到了set集合这个数据类型不重复的特性(34行)。

因为一部电影不会有两个一样的分类信息,所以在30行的type_list(统计出来的电影的所有分类信息,有重复)中直接进行每种分类的计数即可,这里定义一个函数CountItemNum(item,list)以方便后面代码使用。

38行的genre_count_list为数量的列表,与genre_list中分类一一对应。

生成数据图

================================================================

使用条形图或直方图(plt.hist()),0轴为分类名,1轴为该分类的电影数量。

(因为前面使用了set集合,集合具有无序性,每一次运行的时候数据图中的数据顺序不一样,但数量对应上了,问题不大)

Code

===============================================================

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

取消行和列的省略

pd.set_option(‘display.max_columns’, None)

pd.set_option(‘display.max_rows’, None)

###########################################

def CountItemNum(item_1, list_1):

count_num = 0

for i in list_1:

if i == item_1:

count_num += 1

return count_num

movieDataFile = ‘dataFiles/IMDB-Movie-Data.csv’

mov_df = pd.read_csv(movieDataFile)

print(mov_df.head(1))

print(mov_df[‘Genre’])

获得电影分类列表

temp_type_list = mov_df[‘Genre’].str.split(‘,’).tolist()

print(temp_type_list)

所有分类的列表(重复)

type_list = [i for j in temp_type_list for i in j]

print(type_list)

所有分类的列表(不重复)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值