【开卷数据结构 】图的基本介绍,不进来看看吗?_多重图是什么(1)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

**A:**图 G 由两个集合 V 和 E 组成,记作 G=(V,E) 。其中 V 是顶点的有穷非空集合,E 是 V 中顶点偶对的有穷集合,这些顶点偶对称为边。V(G) 和 E(G) 通常分别表示图 G 的顶点集合和边集合。 E(G) 可以为空集,若 E(G) 为空集,则图 G 只有顶点而没有边。

🌺图的基本术语

1)有向图


Q:什么是有向图

**A:**若E是有向边(也称弧)的有限集合时,则图 G 为有向图。弧是顶点的有序对,记为 <v, w> ,其中 v,w 是顶点,v 称为弧尾,w 称为弧头,<v,w> 称为从顶点 v 到顶点 w 的弧,也称 v 邻接到w,也称为 w 邻接自 v 。

有向图 G:

G=(V,E)
V(G)={v1,v2,v3,v4,v5}
E(G)={<v1,v2>,<v2,v1>,<v2,v3>,<v2,v5>,<v3,v5>,<v4,v1>,<v5,v2>}


2)无向图


Q:什么是无向图

**A:**若E是无向边(简称边)的有限集合时,则图G为无向图。边是顶点的无序对,记为 (v, w) 或 (w,v) ,因为 (v,w)=(w,v) , 其中 v,w 是顶点。可以说顶点 w 和顶点 v 互为邻接点。边 (v, w) 依附于顶点 w 和 v ,或者说边( v, w) 和顶点  v, w 相关联。

无向图 G:

G=(V,E)
V(G)={v1,v2,v3,v4,v5}
E(G)={(v1,v2),(v1,v4),(v2,v4),(v3,v4),(v3,v5)}


3)简单图


Q:什么是简单图

**A:**一个图 G 若满足:不存在重复边,不存在顶点到自身的边,则称图 G 为简单图。数据结构中仅讨论简单图。


4)多重图


Q:什么是多重图

**A:**若图 G 中某两个结点之间的边数多于一条,又允许顶点通过同一条边和自己关联,则 G  为多重图。多重图的定义和简单图是相对的。


5)完全图


Q:什么是完全图

**A:**对于无向图,∣E∣ 的取值范围是 0 到 n(n-1)/2 ,有 n(n -1)/2 条边的无向图称为完全图。在完全图中任意两个顶点之间都存在边。对于有向图, |E| 的取值范围是 0 到 n(n-1) ,有 n(n-1) 条弧的有向图称为有向完全图,在有向完全图中任意两个顶点之间都存在方向相反的两条弧。

无向完全图

有向完全图


6)子图


Q:什么是子图

**A:**设有两个图 G=(V, E) 和  G’=(V’, E’) ,若  V’ 是 V 的子集,且 E ′ 是 E 的子集,则称 G ′ 是 G 的子图。若有满足 V(G’)= V(G) 的子图 G′,则称其为 G 的生成子图。

**注意:**并非 V 和 E 的任何子集都能构成 G 的子图,因为这样的子集可能不是图,即 E 的子集中的某些边关联的顶点可能不在这个 V 的子集中。


7)连通、连通图和连通分量


在无向图中,若从顶点 v到顶点 w有路径存在,则称 v 和 w 是连通的。

若图 G 中任意两个顶点都是连通的,称图 G 为连通图,否则称为非连通图。

无向图中的极大连通子图称为连通分量。

若一个图有 n 个顶点,并且边数小于 n − 1 ,则此图必是非连通图。


8)强连通图、强连通分量


在有向图中,若从顶点 v 到顶点 w 和从顶点 w 到项点 v 之间都有路径,则称这两个顶点是强连通的。

若图中任何一对顶点都是强连通的,则称此图为强连通图。

有向图中的极大强连通子图称为有向图的强连通分量。

**注意:**强连通图、强连通分量只是针对有向图而言的。一般在无向图中讨论连通性,在有向图中考虑强连通性。


9)顶点的度、入度和出度


**无向图:**以顶点 i 为端点的边数称为该顶点的度。
**有向图:**以顶点 i 为终点的入边的数目称为该顶点的入度。以顶点 i 为始点的出边的数目称为该顶点的出度。一个顶点的入度和出度和称为该顶点的度。


10)边的权和网


在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的
权值。这种边上带有权值的图称为
带权图,也称网。


11)生成树、生成森林


连通图的生成树是包含图中全部顶点的一个极小连通子图。若图中顶点数为 n ,则它的生成树含有 n-1 条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。在非连通图中,连通分量的生成树构成了非连通图的生成森林。


12)稠密图、稀疏图


边数很少的图称为稀疏图,反之称为稠密图。稀疏和稠密本身是模糊的概念,稀疏图和稠密图常常是相对而言的。一般当图 G 满足  |E| < |V|log|V| 时,可以将 G 视为稀疏图。


13)路径、路径长度和回路


顶点 vp ​到顶点 vq​ 之间的一条路径是指顶点序列 vp​,vi1​​,vi2​​,…,vim​​,vq​ 当然关联的边也可以理解为路径的构成要素。路径上边的数目称为路径长度。第一个顶点和最后一个顶点相同的路径称为回路或环。若一个图有 n 个顶点,并且有大于 n-1 条边,则此图一定有环。

🌺图的存储结构

图的存储必须完整准确的反映顶点集和边集的信息,下面我们介绍两种简单的方法。

🍁邻接矩阵


图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组 V 存储图中顶点信息,一个二维数组(称为邻接矩阵) A 存储图中的边或弧的信息。

设 G=(V,E) 是具有n个顶点的图,顶点的顺序为(v0,v1 ,… ,vn-1),则G的邻接矩阵A:

下图是一个无向图和它的邻接矩阵:

通过观察不难发现:

  • **1)**无向图的邻接矩阵是一个对称矩阵,且主对角线都为 0 。
  • **2)**我们要知道某个顶点的度,其实就是这个顶点 Vi 在邻接矩阵中第 i 行(或第 i 列)的元素之相。比如顶点 V1 的度就是 0+1+0+1+0=2 。
  • **3)**求顶点 vi​ 的所有邻接点就是将矩阵中第 i 行元素扫描一遍, A[i][j] 为 1 就是邻接点。

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

接点。


[外链图片转存中…(img-NOifprOm-1715712926364)]
[外链图片转存中…(img-rKYeocuc-1715712926364)]
[外链图片转存中…(img-eNZtiOjS-1715712926364)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

对任意给定的(顶点数不小于20,边数不少于30,的类型可以是有向、无向、有向网、无向网),能够输入的顶点和边(或弧)的信息,并存储到相应存储结构(邻接矩阵、邻接表、十字链表、邻接多重表,任选其中两种类型),对自己所创建的完成以下操作: 对无向求每个顶点的度,或对有向求每个顶点的入度和出度(5分) 完成插入顶点和边(或弧)的功能(5分) 完成删除顶点和边(或弧)的功能(5分) 两种存储结构的转换(5分),如果其中一种存储结构为十字链表或邻接多重表则增加5分。 输出的深度优先遍历序列或广度优先遍历序列(5分) 求的深度优先或广度优先的生成树(或生成森林)(存储结构为孩子-兄弟链表),并对生成树进行遍历(15分) 判断的连通性,输出连通分量的个数(5分) 判断中是否存在环,无向5分,有向10分 给出顶点u和v,判断u到v是否存在路径(5分) 10、求顶点u到v的一条简单路径(10分) 11、求顶点u到v的所有简单路径(15分) 12、求顶点u到v的最短路径(10分) 13、求顶点u到其余各顶点的最短路径(15分) 14、求任两个顶点之间的最短路径(15分) 15、求最小生成树(15分) 16、对于有一个源点和一个汇点的有向网,求关键路径(20分) 编程环境可以是C、VC++、JAVA,每位同学从上述题目中选择100分的题目,注意,必须选择第1-6题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值