开源分析数据库ClickHouse和开源esProc SPL的性能对比_clickhouse 计算 q1,q2, q3(4)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

当前版本的SPL是用Java写的,Java读数后生成用于计算的对象的速度很慢,而用C++开发的CH则没有这个问题。对于复杂的运算,读数时间占比不高,Java生成对象慢造成的拖累还不明显;而对于简单的遍历运算,读数时间占比很高,所以前面测试中SPL就会比CH更慢。列式游标优化了读数方案,不再生成一个个小对象,使对象生成次数大幅降低,这时候就能把差距拉回来了。单纯从存储本身看,SPL和CH相比并没有明显的优劣之分。

接下来再看常规TopN的对比测试,CH的SQL是:

SQL2:

SELECT * FROM test.t ORDER BY amount DESC LIMIT 100

对比测试结果是这样的:

..
单看CH的SQL2,常规TopN的计算方法是全排序后取出前N条数据。数据量很大时,如果真地做全排序,性能会非常差。SQL2的测试结果说明,CH应该和SPL一样做了优化,没有全排序,所以两者性能都很快,SPL稍快一些。

也就是说,无论简单运算还是复杂运算,esProc SPL都能更胜一筹。

进一步的差距

差距还不止于此。

正如前面所说,CH和ORA使用SQL语言,都是基于关系模型的,所以都面临SQL优化的问题。TPC-H测试证明,ORA能优化的一些场景CH却优化不了,甚至跑不出结果。那么,如果面对一些ORA也不会优化的计算,CH就更不会优化了。比如说我们将SQL1的简单分组汇总,改为两种分组汇总结果再连接,CH的SQL写出来大致是这样:

SQL3:

SELECT *
FROM (
SELECT mod(id, 100) AS Aid, max(amount) AS Amax
FROM test.t
GROUP BY mod(id, 100)
) A
JOIN (
SELECT floor(id / 200000) AS Bid, min(amount) AS Bmin
FROM test.t
GROUP BY floor(id / 200000)
) B
ON A.Aid = B.Bid

这种情况下,对比测试的结果是CH的计算时间翻倍,SPL则不变:

..
这是因为SPL不仅使用了列式游标,还使用了遍历复用机制,能在一次遍历过程中计算出多种分组结果,可以减少很多硬盘访问量。CH使用的SQL无法写出这样的运算,只能靠CH自身的优化能力了。而CH算法优化能力又很差,其优化引擎在这个测试中没有起作用,只能遍历两次,所以性能下降了一倍。

SPL实现遍历复用的代码很简单,大致是这样:

AB
1=file(“topn.ctx”).open().cursor@mv(id,amount)
2cursor A1=A2.groups(id%100:Aid;max(amount):Amax)
3cursor=A3.groups(id\200000:Bid;min(amount):Bmin)
4=A2.join@i(Aid,A3:Bid,Bid,Bmin)

再将SQL2常规TopN计算,调整为分组后求组内TopN。对应SQL是:

SQL4:

SELECT
   gid,
   groupArray(100)(amount) AS amount
FROM
(
   SELECT
      mod(id, 10) AS gid,
      amount
   FROM test.topn
   ORDER BY
      gid ASC,
      amount DESC
) AS a
GROUP BY gid

这个分组TopN测试的对比结果是下面这样的:

..
CH做分组TopN计算比常规TopN慢了42倍,说明CH在这种情况下很可能做了排序动作。也就是说,情况复杂化之后,CH的优化引擎又不起作用了。与SQL不同,SPL把TopN看成是一种聚合运算,和sum、count这类运算的计算逻辑是一样的,都只需要对原数据遍历一次。这样,分组求组内TopN就和分组求和、计数一样了,可以避免排序计算。因此,SPL计算分组TopN比CH快了22倍。

而且,SPL计算分组TopN的代码也不复杂:

A
1=file(“topn.ctx”).open().cursor@mv(id,amount)
2=A1.groups(id%10:gid;top(10;-amount)).news(#2;gid,~.amount)

不只是跑得快

再来看看电商系统中常见的漏斗运算。SPL的代码依然很简洁:

AB
1=[“etype1”,“etype2”,“etype3”]=file(“event.ctx”).open()
2=B1.cursor(id,etime,etype;etime>=date(“2021-01-10”) && etime<date(“2021-01-25”) && A1.contain(etype) && …)
3=A2.group(id).(~.sort(etime))=A3.new(.select@1(etype==A1(1)):first,:all).select(first)
4=B3.(A1.(t=if(#1,t1=first.etime,if(t,all.select@1(etypeA1.~ && etime>t && etime<t1+7).etime, null))))
5=A4.groups(;count((1)):STEP1,count((2)):STEP2,count(~(3)):STEP3)

CH的SQL无法实现这样的计算,我们以ORA为例看看三步漏斗的SQL写法:

with e1 as (
    select gid,1 as step1,min(etime) as t1
    from T
    where etime>= to_date('2021-01-10', 'yyyy-MM-dd') and etime

ORA 的SQL写出来要三十多行,理解起来有相当的难度。而且这段代码和漏斗的步骤数量相关,每增加一步数就要再增加一段子查询。相比之下,SPL就简单得多,处理任意步骤数都是这段代码。

这种复杂的SQL,写出来都很费劲,性能优化更无从谈起。

而CH的SQL还远不如ORA,基本上写不出这么复杂的逻辑,只能在外部写C++代码实现。也就是说,这种情况下只能利用CH的存储引擎。虽然用C++在外部计算有可能获得很好的性能,但开发成本非常高。类似的例子还有很多,CH都无法直接实现。

总结一下:CH计算某些简单场景(比如单表遍历)确实很快,和SPL的性能差不多。但是,高性能计算不能只看简单情况快不快,还要权衡各种场景。对于复杂运算而言,SPL不仅性能远超CH,代码编写也简单很多。SPL能覆盖高性能数据计算的全场景,可以说是完胜CH。

SPL资料

粉丝福利

送两本书:
一本:
在这里插入图片描述
另一本:
在这里插入图片描述

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值