【最小二乘算法】含有遗忘因子的最小二乘算法的永磁同步电机PMSM在线转动惯量和阻尼系数辨识

摘要

本文提出了一种基于含有遗忘因子的最小二乘算法的在线辨识方法,用于永磁同步电机(PMSM)转动惯量和阻尼系数的辨识。通过在控制系统中引入遗忘因子,增强了算法对实时变化的响应能力。仿真结果验证了所提方法的有效性与精度。

理论

  1. 永磁同步电机数学模型 永磁同步电机(PMSM)的动态数学模型可描述为:

其中:

  • 𝐽为转动惯量

  • 𝜔为角速度

  • 𝑇𝑒 为电磁转矩

  • 𝑇𝑙为负载转矩

  • 𝐵为阻尼系数

2. 最小二乘算法 最小二乘法通过最小化误差平方和来估计模型参数,基本更新公式为:

其中:

  • 𝐾 ( 𝑘 ) 为增益矩阵

  • 𝜙 ( 𝑘 ) 为回归矩阵

  • 𝑦 ( 𝑘 ) 为系统输出

3. 引入遗忘因子

为了增强算法对动态变化的跟踪能力,引入遗忘因子𝜆 ,更新公式为:

实验结果

1. 参数辨识曲线

图1显示了转动惯量𝐽和阻尼系数 𝐵的在线辨识结果,辨识值逐渐趋于稳定。

2. 电机电流波形

图2展示了三相电流波形,控制系统能够在较短时间内达到稳态,表明辨识方法对控制精度的改善。

3. 系统框图

图3为永磁同步电机控制系统的Simulink框图,展示了整个辨识与控制过程。

部分代码

% PMSM参数辨识最小二乘算法
lambda = 0.98; % 遗忘因子
P = eye(2);    % 初始协方差矩阵
theta = [0; 0]; % 参数初值 [J; B]

for k = 1:length(data)
    phi = [current_data(k); velocity_data(k)];
    y = torque_data(k);
    K = P * phi / (lambda + phi' * P * phi);
    theta = theta + K * (y - phi' * theta);
    P = (P - K * phi' * P) / lambda;
    
    J_est(k) = theta(1);
    B_est(k) = theta(2);
end

% 结果绘图
plot(time, J_est, 'r', time, B_est, 'b');
xlabel('Time (s)');
ylabel('Parameters');
legend('J (Inertia)', 'B (Damping)');

参考文献

  1. Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall.

  2. Chen, H., & Zhang, J. (2015). Online Parameter Estimation for PMSM Using Recursive Least Squares Algorithm. IEEE Transactions on Energy Conversion.

  3. Zhao, S., & Li, X. (2020). Adaptive Control of PMSM with Online Parameter Identification. IEEE Transactions on Industrial Electronics.

(文章内容仅供参考,具体效果以图片为准)

### 遗忘因子最小二乘法用于转动惯量辨识 遗忘因子最小二乘法(RLS with forgetting factor)是一种有效的算法,能够快速且精准地完成永磁同步电机(PMSM)参数辨识,特别是对于转动惯量阻尼系数负载转矩等动态特性参数的一次性识别[^1]。 #### 方法原理 该方法的核心在于引入了一个遗忘因子λ (0<λ≤1),使得较新的数据被赋予更高的权重而旧的数据逐渐失去影响力。当λ接近于1时,意味着几乎所有的历史数据都被同等对待;反之,则表示更重视最新的测量值。这种方法特别适合处理随时间变化的过程或存在噪声干扰的情况,在线调整模型参数的同时保持良好的跟踪性能[^3]。 #### 实现过程 为了实现这一目标,通常会在MATLAB/Simulink环境中建立相应的仿真平台。具体来说: - **构建PMSM模型**:利用Simulink内置组件创建表贴式的永磁同步电动机结构,并设置好初始条件与输入信号。 - **编写S-function**:针对特定需求开发自定义模块来执行递归计算任务。此部分代码需严格按照数学表达式展开编程工作,确保每一步骤都严格遵循理论框架指导下的操作逻辑[^5]。 以下是简化版的S-function伪代码片段展示如何更新估计参数向量θ̂(k): ```matlab function [sys,x0,str,ts] = rls_forget_sfun(t,x,u,flag,P,e,A,Ts,factor) % 初始化变量... if flag == 0 % Initialization call P = eye(size(A)); % 协方差矩阵初始化为单位阵 elseif flag == 2 % Update calls during simulation y = u; % 获取当前时刻的实际输出y(k)=u(k) K = P*A'/(factor + A*P*A'); % 计算增益K=(P*A')/((A*P)*A'+lambda^-1) e = Td-y; % 预测误差e=y(k)-ŷ(k),其中Td为目标位置 theta_hat = x + K*e; % 更新状态估计theta_hat=theta_hat_old+K*e P = (eye(length(x))-K*A)/factor * P; % 更新协方差矩阵P_new=((I-K*A))*P/factor sys = theta_hat; end ``` 上述代码展示了基本流程的一部分,实际应用中还需要考虑更多细节如边界情况处理、数值稳定性优化等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值