既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
O
(
n
∗
n
∗
m
∗
m
)
O(n*n*m*m)
O(n∗n∗m∗m) 。
完整分析图示:
3、代码1
#include<stdio.h>
#include<string.h>
const int N = 55;
int a[N][N];
int f[N][N][N][N];
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int k,n,m;
scanf("%d",&k);
while(k--)
{
scanf("%d%d",&n,&m);
memset(f,0,sizeof(f));
memset(a,0,sizeof(a));
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&a[i][j]);
for(int i1 = 1; i1 <= n; i1++)
for(int j1 = 1; j1 <= m; j1++)
for(int i2 = 1; i2 <= n; i2++)
for(int j2 = 1; j2 <= m; j2++)
{
if(i1 == i2 && j1 == j2) continue; //走到同一格子
int &x = f[i1][j1][i2][j2];
int t = a[i1][j1] + a[i2][j2];
x = max(x,f[i1-1][j1][i2-1][j2]+t);
x = max(x,f[i1-1][j1][i2][j2-1]+t);
x = max(x,f[i1][j1-1][i2-1][j2]+t);
x = max(x,f[i1][j1-1][i2][j2-1]+t);
}
printf("%d\n",max(f[n][m-1][n-1][m],f[n-1][m][n][m-1]) + a[n][m]);
}
return 0;
}
4、思路2
第一种思路的时间复杂度为
O
(
n
∗
n
∗
m
∗
m
)
O(n*n*m*m)
O(n∗n∗m∗m) ,当n
和m
很大时,这样的效率显然我们是不能接受的。有没有一种方法可以降低时间复杂度那?答案是有的。
这道题的关键在于如何处理” 同一个格子只能走一次 “?
我们发现只有在i1 + j1 == i2 +j2
时,两条路径的格子才可能重合 。我们让 k = i1 + j1 == i2 +j2
,两个人同时从A出发,每个人走的步数和是一样的。
由此我们就可以把路径长度k
,作为动态规划的阶段,每个阶段中,我们同时把两条路径扩展一步,即路径长度加 1
,来进入下一个阶段,而路径长度加1
后,无非就是向下走一格或是向右走一格,对应横纵坐标的变换。
新的状态表示:f[k, i1, i2]
表示所有从(1,1)
,(1,1)
分别走到(i1,k-i1)
, (i2,k-i2)
的路径之和的最大值,k
表示两条路线当前走到的格子的横纵坐标之和(或者说两个人都走了k
步)。
k = i1 + j1 = i2+ j2
因此把状态由f[i1][j1][i2][j2]
优化成三维f[k][i1][i2]
等价于f[i1][k−i1][i2]k−i2]
状态计算:
从(1,1)
,(1,1)
分别走到(i1,j1)
,(i2,j2)
的前一步共有四条路径:
- 第一条:下 第二条:下
f[i1-1]][j1][i2-1][j2] == f[k-1][i1-1][i2-1]
;
- 第一条:下 第二条:右
f[i1-1][j1][i2][j2-1] == f[k-1][i1-1][i2]
;
- 第一条:右 第二条:下
f[i1][j1-1][i2-1][j2] == f[k-1][i1][i2-1]
;
- 第一条:右 第二条:右
f[i1][j1-1][i2][j2-1] == f[k-1][i1][i2]
;
我们解释上面的一种状态:
f[i1-1]][j1][i2-1][j2] == f[k-1][i1-1][i2-1]
:代表两个人都走了k-1
步,A从(i1-1,j1)
走到(i1,j1)
,B从(i2-1,j2)
走到(i2,j2)
。
因此,状态计算方程为: f[k][i1][j1] = max(f[k-1][i1-1][i2-1],f[k-1][i1-1][i2],f[k-1][i1][i2-1],f[k-1][i1][i2]) + a[i1][j1] + a[i2][j2]
。
注意点: 同思路1一样
最终的答案为: max(f[n+m-1][n][n-1],f[n+m-1][n-1][n])+a[n][m]
时间复杂度分析:3
重循环,因此时间复杂度为
O
(
(
n
m
)
∗
n
∗
n
)
O((n+m)*n*n)
O((n+m)∗n∗n) 。
空间复杂度分析: 定义状态为3
维,因此空间复杂度为
O
(
(
n
m
)
∗
n
∗
n
)
O((n+m)*n*n)
O((n+m)∗n∗n) 。
完整分析图示:
5、代码2
#include<stdio.h>
#include<string.h>
const int N = 55;
int a[N][N];
int f[2\*N][N][N];
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int k,n,m;
scanf("%d",&k);
while(k--)
{
scanf("%d%d",&n,&m);
memset(f,0,sizeof(f));
memset(a,0,sizeof(a));
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d",&a[i][j]);
for(int k = 2; k <= n+m; k++)
for(int i1 = 1; i1 <= n; i1++)
for(int i2 = 1; i2 <= n; i2++)
{
int j1=k-i1,j2=k-i2;
if(i1 >= 1 && j1 <= n && i2 >=1 && j2 <=m)
{
if(i1 == i2) continue;
int &x=f[k][i1][i2];
int t = a[i1][j1] + a[i2][j2];
x=max(x,f[k-1][i1-1][i2-1]+t);
x=max(x,f[k-1][i1-1][i2]+t);
x=max(x,f[k-1][i1][i2-1]+t);
x=max(x,f[k-1][i1][i2]+t);
}
}
![img](https://img-blog.csdnimg.cn/img_convert/97243f2b51eb95ced4adfa6278d5987f.png)
![img](https://img-blog.csdnimg.cn/img_convert/9ec0ed45e75cca597519b0354c55d682.png)
![img](https://img-blog.csdnimg.cn/img_convert/25847a2afadef21174658d820074d997.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
[外链图片转存中...(img-YDLZITXW-1715462361911)]
[外链图片转存中...(img-IOpwOP2h-1715462361911)]
[外链图片转存中...(img-UvPN9sKC-1715462361912)]
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**