探寻宝藏 【算法设计与分析课设】 c语言代码 + 思路详解 + 三维优化_传说hmh大沙漠中有一个m n迷宫,里面藏有许多宝物。某天,dr

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

O

(

n

n

m

m

)

O(n*n*m*m)

O(n∗n∗m∗m) 。

完整分析图示:
在这里插入图片描述

3、代码1

#include<stdio.h>
#include<string.h>

const int N = 55;
int a[N][N];
int f[N][N][N][N]; 

int max(int a,int b)
{
	return a>b?a:b;
} 

int main()
{
	int k,n,m;
	scanf("%d",&k);
	while(k--)
	{
		scanf("%d%d",&n,&m);
		memset(f,0,sizeof(f));
		memset(a,0,sizeof(a));
		for(int i = 1; i <= n; i++)
		   for(int j = 1; j <= m; j++)
		     scanf("%d",&a[i][j]);
		for(int i1 = 1; i1 <= n; i1++)
		    for(int j1 = 1; j1 <= m; j1++)
				for(int i2 = 1; i2 <= n; i2++)
					for(int j2 = 1; j2 <= m; j2++)
					{
						if(i1 == i2 && j1 == j2)  continue;  //走到同一格子
						int &x = f[i1][j1][i2][j2];
						int t = a[i1][j1] + a[i2][j2]; 
						x = max(x,f[i1-1][j1][i2-1][j2]+t);
						x = max(x,f[i1-1][j1][i2][j2-1]+t);
						x = max(x,f[i1][j1-1][i2-1][j2]+t);
						x = max(x,f[i1][j1-1][i2][j2-1]+t); 					
					}
		printf("%d\n",max(f[n][m-1][n-1][m],f[n-1][m][n][m-1]) + a[n][m]);	  
	}
	return 0;
} 

4、思路2

第一种思路的时间复杂度为

O

(

n

n

m

m

)

O(n*n*m*m)

O(n∗n∗m∗m) ,当nm很大时,这样的效率显然我们是不能接受的。有没有一种方法可以降低时间复杂度那?答案是有的。

这道题的关键在于如何处理” 同一个格子只能走一次 “?

我们发现只有在i1 + j1 == i2 +j2时,两条路径的格子才可能重合 。我们让 k = i1 + j1 == i2 +j2,两个人同时从A出发,每个人走的步数和是一样的。

由此我们就可以把路径长度k,作为动态规划的阶段,每个阶段中,我们同时把两条路径扩展一步,即路径长度加 1,来进入下一个阶段,而路径长度加1后,无非就是向下走一格或是向右走一格,对应横纵坐标的变换。

新的状态表示:f[k, i1, i2]表示所有从(1,1),(1,1)分别走到(i1,k-i1), (i2,k-i2)的路径之和的最大值,k表示两条路线当前走到的格子的横纵坐标之和(或者说两个人都走了k步)。

k = i1 + j1 = i2+ j2

因此把状态由f[i1][j1][i2][j2]优化成三维f[k][i1][i2]等价于f[i1][k−i1][i2]k−i2]

状态计算:

(1,1),(1,1)分别走到(i1,j1)(i2,j2)的前一步共有四条路径:

  • 第一条:下 第二条:下

f[i1-1]][j1][i2-1][j2] == f[k-1][i1-1][i2-1];

  • 第一条:下 第二条:右

f[i1-1][j1][i2][j2-1] == f[k-1][i1-1][i2];

  • 第一条:右 第二条:下

f[i1][j1-1][i2-1][j2] == f[k-1][i1][i2-1];

  • 第一条:右 第二条:右

f[i1][j1-1][i2][j2-1] == f[k-1][i1][i2];

我们解释上面的一种状态:

f[i1-1]][j1][i2-1][j2] == f[k-1][i1-1][i2-1]:代表两个人都走了k-1步,A从(i1-1,j1)走到(i1,j1),B从(i2-1,j2)走到(i2,j2)

因此,状态计算方程为: f[k][i1][j1] = max(f[k-1][i1-1][i2-1],f[k-1][i1-1][i2],f[k-1][i1][i2-1],f[k-1][i1][i2]) + a[i1][j1] + a[i2][j2]

注意点: 同思路1一样

最终的答案为: max(f[n+m-1][n][n-1],f[n+m-1][n-1][n])+a[n][m]

时间复杂度分析:3重循环,因此时间复杂度为

O

(

(

n

m

)

n

n

)

O((n+m)*n*n)

O((n+m)∗n∗n) 。

空间复杂度分析: 定义状态为3维,因此空间复杂度为

O

(

(

n

m

)

n

n

)

O((n+m)*n*n)

O((n+m)∗n∗n) 。

完整分析图示:
在这里插入图片描述

5、代码2

#include<stdio.h>
#include<string.h>

const int N = 55;
int a[N][N];
int f[2\*N][N][N]; 

int max(int a,int b)
{
	return a>b?a:b;
} 

int main()
{
	int k,n,m;
	scanf("%d",&k);
	while(k--)
	{
		scanf("%d%d",&n,&m);
		memset(f,0,sizeof(f));
		memset(a,0,sizeof(a));
		for(int i = 1; i <= n; i++)
		   for(int j = 1; j <= m; j++)
		     scanf("%d",&a[i][j]);
		for(int k = 2; k <= n+m; k++)
		    for(int i1 = 1; i1 <= n; i1++)
				for(int i2 = 1; i2 <= n; i2++)				
				{
				 	int j1=k-i1,j2=k-i2;
				 	if(i1 >= 1 && j1 <= n && i2 >=1 && j2 <=m)
				 	{
					    if(i1 == i2) continue;
						int &x=f[k][i1][i2];
						int t = a[i1][j1] + a[i2][j2]; 
						x=max(x,f[k-1][i1-1][i2-1]+t);
                		x=max(x,f[k-1][i1-1][i2]+t);
               			x=max(x,f[k-1][i1][i2-1]+t);
                		x=max(x,f[k-1][i1][i2]+t);
					} 					
				}


![img](https://img-blog.csdnimg.cn/img_convert/97243f2b51eb95ced4adfa6278d5987f.png)
![img](https://img-blog.csdnimg.cn/img_convert/9ec0ed45e75cca597519b0354c55d682.png)
![img](https://img-blog.csdnimg.cn/img_convert/25847a2afadef21174658d820074d997.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

[外链图片转存中...(img-YDLZITXW-1715462361911)]
[外链图片转存中...(img-IOpwOP2h-1715462361911)]
[外链图片转存中...(img-UvPN9sKC-1715462361912)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值