高频算法题 —— 检测循环依赖(拓扑排序)_检查循环依赖 leetcode

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        # 初始化邻接表
        adjacency=[[] for _ in range(numCourses)]
        # 初始化每个点的入度
        indegrees=[0 for _ in range(numCourses)]
        # 遍历prerequisites为邻接表、每个点的入度赋值
        for cur,pre in prerequisites:
            adjacency[pre].append(cur)
            indegrees[cur]+=1
        # 将所有入度为0的节点入队
        from collections import deque
        queue=deque()
        for i in range(numCourses):
            if indegrees[i]==0:
                queue.append(i)
        # 使用拓扑排序(依次将队列中入度为0的节点出队)
        while queue:
            pre=queue.popleft()
            numCourses-=1
            # 将pre后面的节点cur的入度通通-1
            for cur in adjacency[pre]:
                indegrees[cur]-=1
                if indegrees[cur]==0:
                    queue.append(cur)
        return not numCourses # 有环numCourses非0返回False
                              # 无环numCourses为0返回True

LeetCode 210. 课程表 II

题目链接

class Solution:
    def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
        adjacency=[[] for _ in range(numCourses)]
        indegrees=[0 for _ in range(numCourses)]
        for cur,pre in prerequisites:
            adjacency[pre].append(cur)
            indegrees[cur]+=1
        from collections import deque
        queue=deque()
        for i in range(numCourses):
            if indegrees[i]==0:
                queue.append(i)
        res=[]
        while queue:
            pre=queue.popleft()
            res.append(pre)
            for cur in adjacency[pre]:
                indegrees[cur]-=1
                if indegrees[cur]==0:
                    queue.append(cur)
        if len(res)==numCourses:


![img](https://img-blog.csdnimg.cn/img_convert/4c3e7179e367e526f1e83aa2dac8890d.png)
![img](https://img-blog.csdnimg.cn/img_convert/c082c16e9b64bfb9ea45ca8bc6db9809.png)
![img](https://img-blog.csdnimg.cn/img_convert/dd7e3d1607160fd6776bb91c4202b512.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值