大数据应用开发和项目实战-Seaborn

设计目标

seaborn 建立在 matplotlib 之上,专注于统计数据可视化,简化绘图过程,提供高级接口和美观的默认主题

Seaborn的安装:

        1.pip install seaborn -i

        2.conda install seaborn (清华源:https://pypi.tuna.tsinghua.edu.cn/simple)

        Seaborn的导入: import seaborn as sns 

sns.set_theme()

sns.set_theme() 可以选择不同的主题和模板。

格式为sns.set_theme(style="whitegrid", context="paper") style取值如下:

格式为sns.set_theme(style="whitegrid", context="paper") context取值如下:

sns.scatterplot() - 散点图

        sns.scatterplot()用于绘制两个变量之间的散点图,可选择添加趋势线

sns.lineplot() - 折线图

        sns.lineplot()用于绘制变量随着另一个变量变化的趋势线图

                (改了一下数,看上去更明显)

sns.barplot() - 柱形图

        sns.barplot()用于绘制变量的均值或其他聚合函数的柱状图

                (柱形图:使用 sns.barplot  sns.barhplot 函数,分别绘制垂直和水平的柱形图。)

sns.boxplot() - 箱线图

        sns.boxplot()用于绘制变量的分布情况,包括中位数、四分位数等。

        (不同颜色的箱子中间的线是中位数,箱子上面和下面的那两个线分别是上四分位和下四分位,箱子外面的那两个线是最大值和最小值)

sns.heatmap() - 热图

        sns.heatmap()用于绘制矩阵数据的热图,通常用于展示相关性矩阵。表示变量之间的相关性。

sns.violinplot() - 小提琴图

        sns.violinplot()用于显示分布的形状和密度估计,结合了箱线图和核密度估计。

        (窄的部分是数据少,宽的部分是数据多)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值