笔记3 使用SPSS进行主成分分析

试利用主成分综合评价全国各地区水泥制造业规模以上企业的经济效益,原始数据来源于 2014年《中国水泥统计年鉴》,如表1所示。

表 1 2013年各地区水泥制造业规模以上企业的主要经济指标

地区

企业单位数(个)

流动资产合计(亿元)

资产总额(亿元)

负债总额(亿元)

主营业务收入(亿元)

利润总额(亿元)

销售利润率(%

北京

8

17.6

43.8

17.8

26.6

-1.4

-5.2

天津

24

43.8

91.7

33.7

35.9

1.5

4.1

河北

231

281.4

993.8

647

565.1

22.7

4

山西

113

103.4

317.4

238.5

124

-2.1

-1.7

内蒙古

116

135.9

384.4

256.8

245.8

11.9

4.8

辽宁

151

151.4

417.6

247.9

350.3

23

6.6

吉林

69

333.7

627.7

415.2

539.8

25.4

4.7

黑龙江

96

142.1

331.6

234.7

183.2

13.5

7.4

上海

14

21.5

28.3

12.6

31.6

1.2

4

江苏

254

300.3

680

435.7

713.3

62.6

8.8

浙江

192

259.8

561.9

300.1

473.9

42.1

8.9

安徽

169

217.2

591.9

305.2

518.8

64.9

12.5

福建

111

93.2

276.4

163.9

284.8

11.2

3.9

江西

138

143.8

398.1

208.4

400.3

47.5

11.9

山东

295

351.8

792.7

412.5

878.3

80.3

9.1

河南

238

388.5

804.2

475.2

673.7

58.3

8.7

湖北

151

193

619.7

360.7

570.5

49.1

8.6

湖南

220

86.4

398.8

212.3

434.1

33.6

7.7

广东

204

217

592.1

345.3

474.3

40.5

8.5

广西

148

116

387.2

178.7

344

49.6

14.4

海南

15

53.1

102.1

52.9

80.7

5.6

6.9

重庆

78

158.3

419.8

294.1

185.1

8.4

4.5

四川

196

218.2

739.1

433.3

465.2

37.1

8

贵州

133

91.5

367.5

244.2

224.7

28.2

12.6

云南

149

134.2

434.7

290.2

251

11.3

4.5

西藏

10

11.3

26.5

5.4

17.4

4.1

23.7

陕西

116

82.2

312.6

203.8

253.2

14.4

5.7

甘肃

68

61.8

213.2

126.8

124.3

13.3

10.7

青海

20

39.5

152.7

123.1

44.4

3

6.7

 

  • 对数据进行主成分分析

将上表中的数据录入 SPSS数据表,对数据进行标准化,选择从相关阵对数据做主成分分析。依次点选Analyze->Dimension Reduction->Factor,进入 Factor Analysis 对话框,将7个指标变量选入 Variables 框中。

 

然后点击右侧的 Descriptives 按钮,在弹出的对话框中,在 Correlation Matrix 中选择 Coefficients,KMO and Bartlett's test ofsphericity。

 

在Extraction对话框中,在Display选择scree plot

 

  • 对输出结果进行分析

首先对数据进行KMO and Bartlett's test ofsphericity检验和相关阵的计算,经检验可知:KMO and Bartlett's test ofsphericity检验结果为0.785大于0.05,不拒绝原假设,并且样本相关阵中相关系数较高,说明8个变量具有很强相关性,可以进行主成分分析。

根据对相关阵的特征根及对应主成分的方差贡献率和累计贡献率分析可得:

X1的方差贡献率为73%<85%,所以第一个主成分并不能很好的提取大部分信息,故需要加入X2,由此可将8个变量降维到2个综合变量。

对Component Matrix表中 Component1和 Component2所对应的两列元素分别除以第1个和第2个特征根的平方根5.163和1.209,得到两个主成分的变换系数λ

可得两个主成分的线性表达式如下:

Y1=0.407 1X1*+0.409 7 X2*+0.4212 X3*+0.4000 X4*+0.426 5 X5*+0.376 7 X6*+0.073 5X7*

Y₂=0.043 7 X1*-0.1546 X2*-0.178 3 X3*-0.2692 X4*+0.070 0 X5*十0.359 2 X6*+0.857 6X7*

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值