SPSS中主成分分析功能在【分析】--【降维】--【因子分析】中完成(在SPSS软件中,主成分分析与因子分析均在【因子分析】模块中完成)。
求解主成分通常从分析原始变量的协方差矩阵或相关矩阵着手。
(1)当变量取值的度量单位相同时,选择从协方差矩阵求解;
(2)当变量取值的度量单位不同时,为了消除不同量纲带来的不利影响,应先对数据进行标准化处理,即选择从相关矩阵求解(SPSS默认)。
数据标准化。数据标准化通过【分析】--【描述统计】--【描述】中,勾选“将标准化得分另存为变量”来实现,SPSS会自动将标准化后的数据存入数据表。
相关性检验。进行主成分分析的前提是变量之间存在较高程度的相关性,即信息冗余。可通过相关系数矩阵(大部分>0.3),KMO值(KMO值至少≥0.5,),Bartlett球形度检验(p<α)来完成变量相关性的检验。在SPSS中通过在【分析】--【降维】--【因子分析】--【描述】对话框中勾选相应选项来完成。
- 主成分的选取。原则:
- (1)方差累积贡献率达到80%或85%及以上;
- (2)选取特征值
对应的主成分;
- (3)碎石图。
主成分系数。SPSS输出结果中可以直接得到的是因子载荷矩阵,注意因子载荷矩阵不是主成分系数矩阵
。
,即将因子载荷矩阵第i列的元素除以
,可得对应的主成分系数表,该表中的第i<