SPSS之主成分分析

SPSS中主成分分析功能在【分析】--【降维】--【因子分析】中完成(在SPSS软件中,主成分分析与因子分析均在【因子分析】模块中完成)。

求解主成分通常从分析原始变量的协方差矩阵或相关矩阵着手。

        (1)当变量取值的度量单位相同时,选择从协方差矩阵求解;

        (2)当变量取值的度量单位不同时,为了消除不同量纲带来的不利影响,应先对数据进行标准化处理,即选择从相关矩阵求解(SPSS默认)。

数据标准化。数据标准化通过【分析】--【描述统计】--【描述】中,勾选“将标准化得分另存为变量”来实现,SPSS会自动将标准化后的数据存入数据表。

相关性检验。进行主成分分析的前提是变量之间存在较高程度的相关性,即信息冗余。可通过相关系数矩阵(大部分>0.3),KMO值(KMO值至少≥0.5,),Bartlett球形度检验(p<α)来完成变量相关性的检验。在SPSS中通过在【分析】--【降维】--【因子分析】--【描述】对话框中勾选相应选项来完成。

  • 主成分的选取。原则:
  • (1)方差累积贡献率达到80%或85%及以上;
  • (2)选取特征值\lambda _{i}> 1对应的主成分;
  • (3)碎石图。

主成分系数。SPSS输出结果中可以直接得到的是因子载荷矩阵\left ( a_{ij} \right )_{p\times p},注意因子载荷矩阵不是主成分系数矩阵\left ( u{}'_{ij} \right )_{p\times p}a_{ij} =\sqrt{\lambda _{i}}u_{ij},即将因子载荷矩阵第i列的元素除以\sqrt{\lambda _{i}},可得对应的主成分系数表,该表中的第i<

SPSS主成分分析是一种降维技术,它可以通过将一组相关变量转换为一组无关的主成分来简化数据集。在SPSS软件中进行主成分分析的步骤如下: 1. 打开SPSS软件并导入数据。 2. 选择“分析”菜单,然后选择“数据降维”和“因子”。 3. 在弹出的对话框中,选择要进行主成分分析的变量,并选择所需的选项,例如选择使用因子的方差或协方差矩阵进行分析。 4. 点击“提取”按钮,选择提取的主成分数量。 5. 点击“确定”按钮,SPSS将计算主成分,并将结果显示在输出窗口中。 在主成分分析的结果中,可以使用成分矩阵来查看每个主成分与原始变量之间的关系。成分矩阵显示了每个变量在每个主成分中的负载程度。 根据提供的引用内容和,第一个主成分主要反映了x2、x3、x4、x5、x6和x8的信息,第二个主成分主要反映了x7的信息,第三个主成分主要反映了x1的信息。 请注意,SPSS主成分分析的结果应根据具体的数据集和研究问题进行解释。以上提供的信息仅为参考。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [SPSS操作(五):主成分分析](https://blog.csdn.net/My_daily_life/article/details/121333063)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值