PROSOFT PTQ-PDPMV1 模块

型号:PTQ-PDPMV1

输出频率:标准kHz

工作电压:标准VV

PROSOFT PTQ-PDPMV1 自动化通讯PLC系统控制功能共享传输Modbus是一种工业标准主/从协议,传统上用于能源管理、传输线控制、管道监控和其他工业过程。A.带有EICM或TCM的Tricon控制器可以作为Modbus主站或从站运行。分布式控制系统通常充当主控制器,而Triconex控制器充当从控制器。

其他相关型号:

PROSOFT5302-MBP-MCM4 
PROSOFTPROSOFT    AN-X2-AB-DHRIO
PROSOFTPROSOFT   5304-MBP-PDPM
PROSOFTPROSOFT MVI56
PROSOFTMB810
PROSOFTVBX01BA 
PROSOFTG3EFa HENF450295R2
PROSOFTMVI69-PDPMV1
PROSOFTPLX32-EIP-SIE 
PROSOFTPTQ-PDPMV1
PROSOFT4301-MBP-DFCM PROSOFT 
PROSOFT51196655-100-ACX633
PROSOFTPROSOFT PLX32-EIP-SIE 
PROSOFTPROSOFT MVI56-PDPMV1 
PROSOFTMVI56-BAS
PROSOFTMVI69E-GSC
PROSOFTP0926JM
PROSOFT6K8-1037302
PROSOFT1452-25M  PROSOFT
PROSOFT5302-MBP-MCM4 
PROSOFTMVI56E-MCMR
PROSOFTMVI56E-MNETXT
PROSOFTMVI56-PDPS
PROSOFTPS693
PROSOFTSDCS-PIN48-SD
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch支持通过量化技术来压缩模型,减小模型大小和内存占用,并提高模型的推理性能。其中,PTQ(Post Training Quantization)是一种常见的量化方法,它可以在训练后对模型进行量化。 PTQ的基本思路是将原始模型中的浮点数参数转化为固定位宽的整数,从而减小模型的大小和内存占用,提高模型在嵌入式设备上的推理速度。在PTQ中,可以对权重、激活值、梯度等进行量化。 下面是使用PyTorch进行PTQ的基本流程: 1. 定义模型 首先需要定义一个PyTorch模型。 2. 定义量化方法 接下来需要定义量化方法。PyTorch提供了一些量化方法,可以根据实际需求进行选择。例如,可以使用torch.quantization.quantize_dynamic()方法进行动态量化,或者使用torch.quantization.quantize_static()方法进行静态量化。 3. 对模型进行量化 使用定义的量化方法对模型进行量化,将浮点数参数转化为整数参数。可以使用torch.quantization.prepare()方法对模型进行准备,使用torch.quantization.convert()方法进行转换。 4. 测试量化后的模型 量化完成后,需要测试量化后的模型,确保准确性没有明显下降。 下面是一个简单的示例代码,演示了如何使用PyTorch进行PTQ: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torchvision.models import resnet18 from torch.utils.data import DataLoader # 定义模型 model = resnet18() # 定义数据预处理 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 训练模型 for epoch in range(5): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[Epoch %d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader))) # 定义量化方法 quantization_method = torch.quantization.quantize_dynamic # 对模型进行量化 model.qconfig = torch.quantization.get_default_qconfig('fbgemm') quantized_model = quantization_method(model, qconfig_spec={nn.Linear}, dtype=torch.qint8) # 测试量化后的模型 quantized_model.eval() testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False) correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = quantized_model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % (100 * correct / total)) ``` 注意:PTQ可能会对模型的准确性产生一定的影响,因此需要根据实际情况进行调整。同时,PTQ的效果也受到数据集的影响,因此需要在实际应用中进行测试和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值