概率波一般指波函数。 波函数,是量子力学中描写微观系统状态的函数。
定义
波函数,是量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(见测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。
数学表达
量子力学假设一:对于一个微观体系,他的任何一个状态都可以用一个坐标和时间的连续、单值、平方可积的函数 Ψ Ψ Ψ来描述。 Ψ Ψ Ψ是体系的状态函数,它是所有粒子的坐标函数,也是时间函数
( Ψ ) Ψ d τ (Ψ)Ψdτ (Ψ)Ψdτ为时刻t及在体积元dτ内出现的概率。 Ψ Ψ Ψ是归一化的: ∫ ( Ψ ) Ψ d τ = 1 ∫(Ψ)Ψdτ=1 ∫(Ψ)Ψdτ=1式中是对坐标的全部变化区域积分。(注: ( Ψ ) (Ψ) (Ψ)指 Ψ Ψ Ψ的共轭复数)
量子力学假设二:体系的任何一个可观测力学量A都可与一个线性算符对应,算符按以下规律构成:
- 坐标 q q q和时间 t t t对应的算符为用 q q q和 t t t来相乘。
- 与 q q q相关联的动量 p p p的算符 { p } = − i h 2 π d d q \{p\}=-i\dfrac{h}{2π}\dfrac{d}{dq} {p}=−i2πhdqd(注: d d d指偏微分,以后不特别说明都指偏微分)
- 对任一力学量 { A } \{A\} {A}先用经典方法写成 q , p , t q,p,t q,p,t的函数 A = A ( q , p , t ) A=A(q,p,t) A=A(q,p,t)则对应的算符为: { A } = A ( q , − i h 2 π d d q , t ) \{A\}=A(q,-i\dfrac{h}{2π}\dfrac{d}{dq},t) {A}=A(q,−i2πhdqd,t)
则:能量算符为: { H } = − h 2 8 π 2 m △ + V \{H\}=\dfrac{-h^2}{8π^{2m}△}+V {H}=8π2m△−h2+V(其中△为拉普拉斯算符)
△ = d 2 d x 2 + d 2 d y 2 + d 2 d z 2 △=\dfrac{d^2}{dx^2}+\dfrac{d^2}{dy^2}+\dfrac{d^2}{dz^2} △=dx2d2+dy2d2+dz2d2(直角坐标)
△ = 1 r 2 d r 2 d d r d r + 1 r 2 s i n θ d s i n θ d d θ d θ + 1 r 2 s i n 2 θ d 2 d φ 2 △=\dfrac{\dfrac{1}{r^2}d\dfrac{r^2d}{dr}}{dr}+\dfrac{\dfrac{1}{r^2sinθ}d\dfrac{sinθd}{dθ}} {dθ}+\dfrac{1}{r^2sin^2θ}\dfrac{d^2}{dφ^2} △=drr21ddrr2d+dθr2sinθ1ddθsinθd+r2sin2θ1dφ2d2(球坐标)
角动量算符:
{
L
[
x
]
}
=
−
i
h
2
π
(
y
d
d
z
−
z
d
d
y
)
\{L[x]\}=-i\dfrac{h}{2π}(\dfrac{yd}{dz}-\dfrac{zd}{dy})
{L[x]}=−i2πh(dzyd−dyzd)
{
L
[
y
]
}
=
−
i
h
2
π
(
z
d
d
x
−
x
d
d
z
)
\{L[y]\}=-i\dfrac{h}{2π}(\dfrac{zd}{dx}-\dfrac{xd}{dz})
{L[y]}=−i2πh(dxzd−dzxd)
{
L
[
z
]
}
=
−
i
h
2
π
(
x
d
d
y
−
y
d
d
x
)
\{L[z]\}=-i\dfrac{h}{2π}(\dfrac{xd}{dy}-\dfrac{yd}{dx})
{L[z]}=−i2πh(dyxd−dxyd)
L
2
=
{
L
[
x
]
}
2
+
{
L
[
y
]
}
2
+
{
L
[
z
]
}
2
L^2=\{L[x]\}^2+\{L[y]\}^2+\{L[z]\}^2
L2={L[x]}2+{L[y]}2+{L[z]}2
量子力学假设三:若某一力学量 A A A的算符 { A } \{A\} {A}作用于某一状态函数 ψ ψ ψ后,等于一常数 a a a乘以 ψ ψ ψ,即 { A } ψ = a ψ \{A\}ψ=aψ {A}ψ=aψ则称力学量 A A A对 ψ ψ ψ描述的状态有确定的数值 a a a。 a a a称的本征值, ψ ψ ψ称的本征波函数,方程 { A } ψ = a ψ \{A\}ψ=aψ {A}ψ=aψ称的本征方程。显然,对能量来说, { H } ψ = E ψ \{H\}ψ=Eψ {H}ψ=Eψ即为定态的薛定谔方程。含时的薛定谔方程为: { H } Ψ = i h 2 π d Ψ d t \{H\}Ψ=\dfrac{ih}{2π}\dfrac{dΨ}{dt} {H}Ψ=2πihdtdΨ
量子力学假设四:若 ψ [ 1 ] , ψ [ 2 ] … ψ [ n ] ψ[1],ψ[2]…ψ[n] ψ[1],ψ[2]…ψ[n]为某一微观体系的可能状态,则他们的线性组合 ∑ C ψ ∑Cψ ∑Cψ也是该体系的可能状态,称 ψ ψ ψ的这一性质为叠加原理。
- 有本征值力学量的平均值:
设 ψ ψ ψ对应本征值为 a a a,体系处于状态 ψ ψ ψ,若 ψ ψ ψ已归一化则:
a ( 平 均 值 ) = ∫ ( ψ ) A ψ d τ = ∑ ∣ C ∣ 2 a a(平均值)=∫(ψ){A}ψdτ=∑|C|^2a a(平均值)=∫(ψ)Aψdτ=∑∣C∣2a - 无本征值力学量的平均值:
F ( 平 均 值 ) = ∫ ( ψ ) F ψ d τ F(平均值)=∫(ψ){F}ψdτ F(平均值)=∫(ψ)Fψdτ
则定态中所有的力学量平均值都不随时间变化。
概念诠释
波函数是概率波。其模的平方代表粒子在该处出现的概率密度。
既然是概率波,那么它当然具有归一性。即在全空间的积分。
然而大多数情况下由薛定谔方程求出的波函数并不归一,要在前面乘上一个系数 N N N,即把它带入归一化条件,解出 N N N。至此,得到的才是归一化之后的波函数。注意 N N N并不唯一。波函数具有相干性,具体地说,两个波函数叠加,概率并非变成 12 + 12 = 24 12+12=24 12+12=24倍,而是在有的地方变成 ( 1 + 1 ) 2 = 4 (1+1)2=4 (1+1)2=4倍,有的地方变成 ( 1 − 1 ) 2 = 0 (1-1)2=0 (1−1)2=0,具体取决于两个波函数的相位差。联想一下光学中的杨氏双缝实验,不难理解这个问题。
总结
概率波是量子力学中描述粒子行为的概念。根据量子力学的波粒二象性,粒子既可以表现为粒子(具有局域性和离散能量)也可以表现为波动(具有波动性和连续能量)。概率波描述的是一个粒子在空间中的分布情况,其平方模描述了在给定位置上找到粒子的概率。
概率波的描述使用波函数(或称为状态函数),通常用希腊字母 Ψ ( P s i ) Ψ(Psi) Ψ(Psi)表示。波函数描述了粒子在空间中的分布,并可以用来计算粒子的运动和性质。波函数的平方模 ( ∣ Ψ ∣ ² ) (|Ψ|²) (∣Ψ∣²)给出了在给定位置上找到粒子的概率密度。
根据波动方程,波函数会随时间演化。量子力学中的概率波采用的是薛定谔方程,描述了波函数随时间的变化规律。薛定谔方程允许人们推断出粒子的状态和行为。
概率波也体现了量子力学的不确定性原理。根据不确定性原理,无法同时准确测量粒子的位置和动量,而是通过测量得到的结果的概率分布来描述。这与经典力学中粒子的确定性运动不同。
总之,概率波是量子力学中用来描述粒子行为的波函数,它描述了粒子在空间中的分布和运动,并允许人们通过概率分布来推断粒子的性质。