速度相加定理——在光速飞船上跑,你超光速了?

爱因斯坦的狭义相对论告诉过我们,光速是不可超越的,光速是宇宙速度极限,难道相对论错了吗?

速度相加定理

相对论原文第一部分第六章

假设我们的老朋友火车车厢以恒定的速度 w w w在铁轨上行驶;并且有一个乘客在车厢里以速度w沿行驶方向从车厢一头走到另一头。那么对于路基而言,乘客向前走得有多快呢?简单地说,乘客前行的速度v有多大呢?唯一可能的解答只能根据下列考虑而得:如果车厢中的乘客停止行动一秒,相对于路基而言他在这一秒里前进了一段距离 v v v,在数值上与车厢的速度相等。但他在以恒定速度前行的车厢中向前走动,在这一秒钟里他相对于车厢,也就是相对于路于路基多走了一段距离 v v v,这段距离在数值上等于乘客在车厢里走动的速度。因而,在所考虑的这一秒钟里该乘客总共相对于路基走了距离 w ’ = v + w w’=v+w w=v+w。我们随后将会看到,这一表述经典力学的速度相加定理的结果,是不能加以支持的;换句话说,我们刚才写下的定律是不成立的。但我们暂时认为它是正确的。

速度相加定理

速度相加定理是一个物理定理,它描述了两个物体相对于一个固定点的速度如何相加。根据速度相加定理,如果一个物体以速度v1相对于固定点移动,同时另一个物体以速度 v 2 v2 v2相对于相同的固定点移动,那么它们的速度相对于固定点的和是 v 1 + v 2 v1 + v2 v1+v2

速度相加定理可以用来解决一些与物体相对运动相关的问题。例如,如果一个人以恒定速度 5 m / s 5 m/s 5m/s向前行走,而另一个人以恒定速度 3 m / s 3 m/s 3m/s向后行走,那么两人相对于一个固定点的速度相加就是 5 m / s + ( − 3 m / s ) = 2 m / s 5 m/s + (-3 m/s) = 2 m/s 5m/s+(3m/s)=2m/s。这意味着两人相对于固定点的速度是 2 m / s 2 m/s 2m/s,其中正号表示向前行走,负号表示向后行走。

需要注意的是,速度相加定理只适用于速度的代数相加,即考虑速度的大小和方向。这与物体的位移相加不同,位移相加是根据物体在不同时间段内的位移进行加法运算。

正解

之所以你会得出“超光速”的结论,这样的结论有一个重要前提就是:时空是绝对的,也就是牛顿力学下的绝对时空观。

但是爱因斯坦告诉我们,时间和空间并不是绝对的,并不是一成不变的,而是相对的,每个人在不同的参照系下对时间和空间的感受都是不一样的,说白了,时间和空间都是有弹性的,会随着物体运动(还有引力作用)而发生改变。

物体的运动会影响周围的时间和空间,既然时间和空间(也就是距离)会发生改变,我们在计算速度时就不能简单地用距离除以时间来计算了,必须考虑到时间和空间的变化。

说白了,我们经常用的速度叠加公式(实际上就是伽利略变换)在亚光速情况下就不再适用了,而必须用更精确的洛伦兹变换才可以,用公式表达就是: v ′ = ( v + u ) / ( 1 + u v / c 2 ) v' = (v + u) / (1 + uv/c^2) v=(v+u)/(1+uv/c2)

公式并不复杂,从公式中可以看出,当u和v很小时,分母区域1,公式就简化为 v ′ = v + u v' = v + u v=v+u,也就是我们常见的速度叠加公式(伽利略变换)。

但是当u和v很大,尤其是接近光速时,就不能简化为伽利略变换了。举个例子,火车以 0.5 C 0.5C 0.5C的速度行驶,你在火车上同样以 0.5 C 0.5C 0.5C的速度奔跑(假设都可以做到),那么在地面上的我看来,你的速度是多少呢?

如果用传统的速度叠加公式(伽利略变换)来计算,你的速度应该是 0.5 C + 0.5 C 0.5C+0.5C 0.5C+0.5C,也就是光速。但实际上并不是,亚光速世界必须用洛伦兹变换,结算出来就是 v ′ = ( 1 / 2 + 1 / 2 ) / ( 1 + 1 / 4 ) c v' = (1/2 + 1/2) / (1 + 1/4) c v=(1/2+1/2)/(1+1/4)c,简化之后速度等于4/5c,也就是0.8倍光速,你并没有达到光速。

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值