利用Python构建衣服尺码预测模型

数据预处理
在数据预处理阶段,我们需要对数据进行清洗、转换和特征工程。以下是一些可能的步骤:

数据清洗:去除重复数据、缺失值过多的数据以及明显错误的数据。
数据转换:将身高、体重等连续型变量进行标准化或归一化处理,以便更好地进行模型训练。
特征工程:除了身高、体重和性别等基本信息外,还可以考虑添加一些衍生特征,如BMI(身体质量指数)等

df.isnull().sum()

数据清洗  (在这次的模型中只需要进行数据清洗)

df2= df.dropna().reset_index(drop=True)
df2.isnull().sum()

数据可视化

在构建尺码预测模型时,我们可以选择多种机器学习算法,如逻辑回归、决策树、随机森林、梯度提升机等。考虑到尺码预测是一个多分类问题(通常包括S、M、L、XL等多个尺码),我们可以选择支持多分类的算法,如随机森林或梯度提升机

第一种方法 

import matplotlib.pyplot as plt
plt.figure(figsize=(12,8))
plt.scatter(
    df2['height'],
    df2['weight'],
    c=df2['size'].map({'XL':

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值