数据分析是利用数学、统计学理论与实践相结合的科学统计分析方法,对Excel数据、数据库中的数据、收集的大量数据、网页抓取的数据进行分析,从中提取有价值的信息并形成结论进行展示的过程。
Python库
所需的库为pandas库
import pandas as pd
导入库后,后面的代码才可以正常运行!
类和对象
类是一个对象的抽象集合体,对象是根据类创造出来的实体。
类(类的三要素:类名、属性、方法)
1、类的定义: 使用class关键字开始,后跟类名,通常首字母大写,类名后可以包含属性和方法的定义。属性是描述对象状态的变量,方法是对象的行为或功能。类是一张图纸、模板(例如:服装设计图纸)
2、对象的创建:使用类名后加括号()
来创建类的实例,每个实例都是该类的一个独特副本,拥有类中定义的属性和方法。
3、属性访问:可以通过点.
运算符访问对象的属性,如object_name.attribute
。
4、方法调用:通过点.
或对象名加括号()
调用方法,如object_name.method()
。
5、封装:Python的类提供了一种封装机制,隐藏实现细节,只对外公开必要的接口,增强代码的安全性和可维护性。
6、一个类可以制造出多个对象(例如:衣服)
每个对象的属性值可能有所不同(例如:颜色)
一定是先有类才有对象
(类只有一个,对象可以多个)
类的属性和方法
属性是一个类里面所有对象共同拥有的特征,方法(函数)是类里面所有对象共同拥有的功能
class 类名:
def 方法名(self,参数1,参数2,...):
pass
# 创建对象的语法格式
对象名p = 类名(参数)
# 调用对象的方法
对象名p.方法名()
设计一个猫类,例如:
序列对象和表格对象
属性
属性 | 含义 |
values | 元素(值) |
index | 索引 |
name | 名称 |
dtypes | 元素类型 |
size | 元素个数 |
ndim | 维度数 |
shape | 数据形状(行列数目) |
一、Series序列对象
在Python的Pandas库中,Series是一个一维的数组结构,它是Pandas数据结构中的基本单位,类似于R语言中的向量或SQL数据库中的行。Series对象存储了数据和相关的索引,每个元素都有唯一的标签,允许数据按照标签进行操作和分析。
1、序列对象的属性
例如(部分):
2、序列对象的运算
序列对象和数字或者另一个序列之间可以进行基本的运算
3、序列对象的常用方法
(1)astype方法实现元素类型转换
import pandas as pd
series = pd.Series([1,2,3])
print(series.astype(str))
series2 = pd.Series(['1','2','3'])
print(series2.astype(int))
(2) value_counts()统计序列中各个元素出现的次数
series = pd.Series([1,2,3,3,4,4,4])
series.value_counts()
(3)sort_values()对序列中的元素重新排序
series = pd.Series([1,3,5,2,4])
print(series.sort_values())
print(series.sort_values(ascending=False))
(4)round()方法调整元素的小数点位数
series = pd.Series([1/3,2/3,1/6])
print(series)
print(series.round(1))
print(series.round(2))
(5)str.方法名()实现对字符串序列的处理
-
str.contain()查询序列中各个元素是否包含某个字符串
- str.replace()实现序列中所有元素中某个字符串的替换
(6)agg()方法实现序列中元素的统一加工
(7) 求数字型序列的统计量
二、DataFrame表格对象
导入数据库表格或者Excel数据时形成 的数据对象就是表格对象
1、表格对象的属性
print('值属性:\n',df.values)
print('索引属性:\n',df.index)
print('列名称属性:\n',df.columns)
print('形状属性:\n',df.shape)
2、表格对象的基本方法
- head(): 返回前5行数据,用于概览
df.head(5)
- info(): 查看表格对象行列数、各列的数据类型和非空值数量
df.info()
- describe(): 对表格对象中的数字型序列进行各类统计量的计算
df.describe()
- rename(): 修改表格对象的列名称
df2 = df.rename(columns={'a':'b')
- to excel():将表格对象导出成excel
df.to_excel()